【codeforces #292(div 1)】ABC题解

本文解析了三道算法竞赛题目,包括数学游戏中的贪心算法、二维平面中的图论问题及动态规划,还有圆周上的最优化问题。通过具体实例介绍了如何高效解决这些问题,并附带源代码。
A. Drazil and Factorial
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Drazil is playing a math game with Varda.

Let's define  for positive integer x as a product of factorials of its digits. For example, .

First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:

1. x doesn't contain neither digit 0 nor digit 1.

2.  = .

Help friends find such number.

Input

The first line contains an integer n (1 ≤ n ≤ 15) — the number of digits in a.

The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.

Output

Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.

Sample test(s)
input
4
1234
output
33222
input
3
555
output
555
Note

In the first case, 

贪心:

首先把原数x计算F(x)后所含有的123456789都统计出来。


然后把9拆成3*3;8拆成2*2*2;6拆成2*3;4拆成2*2;剩下的5和7不能拆,只能直接算阶乘。


最后就剩下了许多个3和许多个2了,此时3一定比2少。


最后从大到小依次输出7,5,3,2即可。


#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
using namespace std;
char s[20];
int ans[10],cnt[10],a[10];
int main()
{
	int n;
        scanf("%d",&n);
	scanf("%s",s);
	for (int i=0;i<n;i++)
	{
		int x=s[i]-'0';
		for (int j=2;j<=x;j++)
			cnt[j]++;
	}
	a[1]=7,a[2]=5;
	for (int i=1;i<=2;i++)
		if (cnt[a[i]])
		{
			ans[a[i]]=cnt[a[i]];
			for (int j=2;j<=a[i];j++)
				cnt[j]-=ans[a[i]];
		}
	cnt[3]+=(cnt[9]*2);
	cnt[2]+=(cnt[8]*3);
	cnt[2]+=cnt[6],cnt[3]+=cnt[6];
	cnt[2]+=(cnt[4]*2);
	ans[3]=cnt[3],cnt[2]-=cnt[3];
	ans[2]=cnt[2];
	a[1]=7,a[2]=5,a[3]=3,a[4]=2;
	for (int i=1;i<=4;i++)
		for (int j=1;j<=ans[a[i]];j++)
			cout<<a[i];
	cout<<endl;
	return 0;
}


B. Drazil and Tiles
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Drazil created a following problem about putting 1 × 2 tiles into an n × m grid:

"There is a grid with some cells that are empty and some cells that are occupied. You should use 1 × 2 tiles to cover all empty cells and no two tiles should cover each other. And you should print a solution about how to do it."

But Drazil doesn't like to write special checking program for this task. His friend, Varda advised him: "how about asking contestant only to print the solution when it exists and it is unique? Otherwise contestant may print 'Not unique' ".

Drazil found that the constraints for this task may be much larger than for the original task!

Can you solve this new problem?

Note that you should print 'Not unique' either when there exists no solution or when there exists several different solutions for the original task.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 2000).

The following n lines describe the grid rows. Character '.' denotes an empty cell, and the character '*' denotes a cell that is occupied.

Output

If there is no solution or the solution is not unique, you should print the string "Not unique".

Otherwise you should print how to cover all empty cells with 1 × 2 tiles. Use characters "<>" to denote horizontal tiles and characters "^v" to denote vertical tiles. Refer to the sample test for the output format example.

Sample test(s)
input
3 3
...
.*.
...
output
Not unique
input
4 4
..**
*...
*.**
....
output
<>**
*^<>
*v**
<><>
input
2 4
*..*
....
output
*<>*
<><>
input
1 1
.
output
Not unique
input
1 1
*
output
*
Note

In the first case, there are indeed two solutions:

<>^
^*v
v<>

and

^<>
v*^
<>v

so the answer is "Not unique".


第一眼看到这道题心想:这不是染色+二分图匹配吗?


然后就开始想怎么快速判断是否二分图的完全匹配是否唯一??最后光荣的在第36个数据上T了。。(谁有快速的方法。。求告知vv)


看题解才知道,其实和二分图匹配一点关系都没有。。


有点类似于拓扑排序:能够用同一个纸片覆盖的格子连一条边,把两个格子的度数+1(两个格子之间最多一条边)。


扫描一次所有格子的度数,度数为1的加入队列,那么这些格子所对应的与他们一块被覆盖的格子是唯一的,出队之后把队列中对应格子的对应格子度数-1,度数为1的再次入队。


如果队列为空之后,所有格子都被覆盖好了,那么此图有且仅有一个解;如果有格子没有被覆盖好,直接输出"Not unique",可能无解,也可能多解(是哪种就不用管了)

代码中Judge注释掉的部分是暴力用二分图来判定的;输出答案的部分直接用二分图来做了。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
using namespace std;
int b,w,xx,yy,n,m,t,ti,v[2005][2005],fx[10][3],in[2005][2005],a[2005][2005],p[2005][2005];
char x[10],s[2005];
struct data
{
	int x,y;
}my[2005][2005];
queue<data> q;
bool dfs(int x,int y)
{
	for (int i=1;i<=4;i++)
	{
		int nx=x+fx[i][1],ny=y+fx[i][2];
		if (nx<1||ny<1||nx>n||ny>m||a[nx][ny]!=1||v[nx][ny]==t) continue;
		v[nx][ny]=t;
		if (!my[nx][ny].x||dfs(my[nx][ny].x,my[nx][ny].y))
		{
			my[nx][ny].x=x,my[nx][ny].y=y;
			return true;
		}
	}
	return false;
}
bool dfs2(int x,int y,int k)
{
	for (int i=1;i<=4;i++)
	{
		int nx=x+fx[i][1],ny=y+fx[i][2];
		if (nx==xx&&ny==yy&&!k) continue;
		if (nx<1||ny<1||nx>n||ny>m||a[nx][ny]!=1||v[nx][ny]==t) continue;
		v[nx][ny]=t;
		if (!my[nx][ny].x||dfs2(my[nx][ny].x,my[nx][ny].y,1))
		{
			my[nx][ny].x=x,my[nx][ny].y=y;
			return true;
		}
	}
	return false;
}
bool Judge()
{
	/*
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++)
			if (!a[i][j])
			{
				t++;
				for (int k=1;k<=4;k++)
				{
					int nx=i+fx[k][1],ny=j+fx[k][2];
		            if (my[nx][ny].x==i&&my[nx][ny].y==j) xx=nx,yy=ny;
	            }
				if (in[xx][yy]==1) continue;
	            my[xx][yy].x=0;
				if (dfs2(i,j,0)) return false;
	            my[xx][yy].x=i,my[xx][yy].y=j;
			}
	return true;*/
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++)
		{
			v[i][j]=0;
			if (in[i][j]==1) 
			{
				data x;
				x.x=i,x.y=j;
				q.push(x);
			}
		}
	while (!q.empty())
	{
		data x=q.front();
		q.pop();
		if (v[x.x][x.y]) continue;
		v[x.x][x.y]=1;
		for (int i=1;i<=4;i++)
		{
			int nx=x.x+fx[i][1],ny=x.y+fx[i][2];
			if (nx<1||ny<1||nx>n||ny>m||v[nx][ny]||a[nx][ny]==-1) continue;
			v[nx][ny]=1;
			for (int j=1;j<=4;j++)
			{
				int nxx=nx+fx[j][1],nyy=ny+fx[j][2];
				in[nxx][nyy]--;
				if (in[nxx][nyy]==1)
				{
					data X;
					X.x=nxx,X.y=nyy;
					q.push(X);
				}
			}
		}
	}
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++)
			if (a[i][j]!=-1&&!v[i][j]) return false;
	return true;
}
void Print()
{
	x[1]='*',x[2]='<',x[3]='>',x[4]='^',x[5]='v';
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++)
			if (a[i][j]==1)
			{
				int x=my[i][j].x,y=my[i][j].y;
				if (x==i)
				{
					p[x][min(j,y)]=2,p[x][max(j,y)]=3;
				}
				else
				{
					p[min(x,i)][j]=4,p[max(x,i)][j]=5;
				}
			}
	for (int i=1;i<=n;i++)
	{
		for (int j=1;j<=m;j++)
		{
			if (!p[i][j]) printf("*");
			else printf("%c",x[p[i][j]]);
		}
		printf("\n");
	}
}
int main()
{
	fx[1][1]=fx[2][1]=0,fx[1][2]=1,fx[2][2]=-1;
	fx[3][2]=fx[4][2]=0,fx[3][1]=1,fx[4][1]=-1;
    scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)
	{
		scanf("%s",s);
		for (int j=0;j<m;j++)
		{
			if (s[j]=='*') a[i][j+1]=-1;
			else a[i][j+1]=1&(i+j+1);
		}
	}
	b=0,w=0;
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++)
		{
			if (a[i][j]==1) 
			{
				b++;
				for (int k=1;k<=4;k++)
				{
					int nx=i+fx[k][1],ny=j+fx[k][2];
					if (nx<1||ny<1||nx>n||ny>m) continue;
					if (a[nx][ny]==0)in[i][j]++,in[nx][ny]++;
				}
			}
			if (!a[i][j]) w++;
		}
	if (w!=b)
	{
		puts("Not unique");
		return 0;
	}
	int ans=0;
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++)
			if (!a[i][j]) 
			{
				t++;
				if (dfs(i,j))
					ans++;
			}
	if (ans!=w)
	{
		puts("Not unique");
		return 0;
	}
	if (Judge())
	{
		Print();
	}
	else
	{
		puts("Not unique");
	}
	return 0;
}


C. Drazil and Park
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Drazil is a monkey. He lives in a circular park. There are n trees around the park. The distance between the i-th tree and (i + 1)-st trees is di, the distance between the n-th tree and the first tree is dn. The height of the i-th tree is hi.

Drazil starts each day with the morning run. The morning run consists of the following steps:

  • Drazil chooses two different trees
  • He starts with climbing up the first tree
  • Then he climbs down the first tree, runs around the park (in one of two possible directions) to the second tree, and climbs on it
  • Then he finally climbs down the second tree.

But there are always children playing around some consecutive trees. Drazil can't stand children, so he can't choose the trees close to children. He even can't stay close to those trees.

If the two trees Drazil chooses are x-th and y-th, we can estimate the energy the morning run takes to him as 2(hx + hy) + dist(x, y). Since there are children on exactly one of two arcs connecting x and y, the distance dist(x, y) between trees x and yis uniquely defined.

Now, you know that on the i-th day children play between ai-th tree and bi-th tree. More formally, if ai ≤ bi, children play around the trees with indices from range [ai, bi], otherwise they play around the trees with indices from .

Please help Drazil to determine which two trees he should choose in order to consume the most energy (since he wants to become fit and cool-looking monkey) and report the resulting amount of energy for each day.

Input

The first line contains two integer n and m (3 ≤ n ≤ 1051 ≤ m ≤ 105), denoting number of trees and number of days, respectively.

The second line contains n integers d1, d2, ..., dn (1 ≤ di ≤ 109), the distances between consecutive trees.

The third line contains n integers h1, h2, ..., hn (1 ≤ hi ≤ 109), the heights of trees.

Each of following m lines contains two integers ai and bi (1 ≤ ai, bi ≤ n) describing each new day. There are always at least two different trees Drazil can choose that are not affected by children.

Output

For each day print the answer in a separate line.

Sample test(s)
input
5 3
2 2 2 2 2
3 5 2 1 4
1 3
2 2
4 5
output
12
16
18
input
3 3
5 1 4
5 1 4
3 3
2 2
1 1
output
17
22
11
线段树/RMQ


首先复制一次,变环为链。


说说我的线段树做法:

对于一个区间,维护三个值:

ma: “ |____|”的最大值

L_:“|__”的最大值

_R:“__|”的最大值


然后进行区间合并什么的就可以了。


题解给出的是RMQ算法:

如果要求x-y这一段的值:(h[y]*2+d[1]+d[2]+d[3]+...d[y-1])+(h[x]*2-d[1]-d[2]-d[3]-...-d[x-1])

对于第一部分记为A[y],第二部分记为B[x],只要用RMQ求区间最大的A[]和B[]相加即可(可以证明顺序一定不会反过来)


我的线段树代码(一开始数组开到20w会RE...)

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#define LL long long
#define M 2000000+5
using namespace std;
struct data
{
	int l,r;
	LL ma,l_,_r;
}a[M*2];
int n,m;
LL h[M],s[M],d[M],inf;
data Push_up(data a,data b)
{
	data c;
	c.l=a.l,c.r=b.r;
	c.ma=max(a.l_+b._r+d[a.r],max(a.ma,b.ma));
	c.l_=max(b.l_,a.l_+s[b.r-1]-s[a.r-1]);
	c._r=max(a._r,b._r+s[a.r]-s[a.l-1]);
	return c;
}
void Build(int x,int l,int r)
{
	a[x].l=l,a[x].r=r;
	if (l==r)
	{
		a[x].ma=-inf;
		a[x].l_=a[x]._r=h[l];
		return;
	}
	int m=(l+r)>>1;
	Build(x<<1,l,m);
	Build((x<<1)+1,m+1,r);
	a[x]=Push_up(a[x<<1],a[(x<<1)+1]);
}
data Get(int x,int l,int r)
{
	if (l<=a[x].l&&r>=a[x].r) return a[x];
	int m=(a[x].l+a[x].r)>>1;
	if (r<=m)
		return Get(x<<1,l,r);
	if (l>m)
		return Get((x<<1)+1,l,r);
	return Push_up(Get(x<<1,l,r),Get((x<<1)+1,l,r));
}
int main()
{
	inf=(LL)1e18;
        scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)
		cin>>d[i],d[n+i]=d[i];
	for (int i=1;i<=n*2;i++)
		s[i]=s[i-1]+d[i];
	for (int i=1;i<=n;i++)
		cin>>h[i],h[i]*=2LL,h[n+i]=h[i];
	Build(1,1,n*2);
	for (int i=1;i<=m;i++)
	{
		int l,r;
		scanf("%d%d",&l,&r);
		if (l<=r) cout<<Get(1,r+1,l-1+n).ma<<endl;
		else cout<<Get(1,r+1,l-1).ma<<endl;
	}
	return 0;
}


感悟:

定式思维太可怕。。。

### 关于 Codeforces Round 839 Div 3 的题目与解答 #### 题目概述 Codeforces Round 839 Div 3 是一场面向不同编程水平参赛者的竞赛活动。这类比赛通常包含多个难度层次分明的问题,旨在测试选手的基础算法知识以及解决问题的能力。 对于特定的比赛问题及其解决方案,虽然没有直接提及 Codeforces Round 839 Div 3 的具体细节[^1],但是可以根据以往类似的赛事结构来推测该轮次可能涉及的内容类型: - **输入处理**:给定一组参数作为输入条件,这些参数定义了待解决的任务范围。 - **逻辑实现**:基于输入构建满足一定约束条件的结果集。 - **输出格式化**:按照指定的方式呈现最终答案。 考虑到提供的参考资料中提到的其他几场赛事的信息[^2][^3],可以推断出 Codeforces 圆桌会议的一般模式是围绕着组合数学、图论、动态规划等领域展开挑战性的编程任务。 #### 示例解析 以一个假设的例子说明如何应对此类竞赛中的一个问题。假设有如下描述的一个简单排列生成问题: > 对于每一个测试案例,输出一个符合条件的排列——即一系列数字组成的集合。如果有多种可行方案,则任选其一给出即可。 针对上述要求的一种潜在解法可能是通过随机打乱顺序的方式来获得不同的合法排列形式之一。下面是一个 Python 实现示例: ```python import random def generate_permutation(n, m, k): # 创建初始序列 sequence = list(range(1, n + 1)) # 执行洗牌操作得到新的排列 random.shuffle(sequence) return " ".join(map(str, sequence[:k])) # 测试函数调用 print(generate_permutation(5, 2, 5)) # 输出类似于 "4 1 5 2 3" ``` 此代码片段展示了怎样创建并返回一个长度为 `k` 的随机整数列表,其中元素取自 `[1..n]` 这个区间内,并且保证所有成员都是唯一的。需要注意的是,在实际比赛中应当仔细阅读官方文档所提供的精确规格说明,因为这里仅提供了一个简化版的方法用于解释概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值