基于XLNet模型的下一代机器质检:从关键词到语义点

传统的“关键词+正则表达式”质检系统存在漏检问题,而基于“语义点+机器学习”的质检方案,如使用XLNet模型,能大幅提升效果,找出更多问题。XLNet模型擅长理解长句子,已在多个领域实现商业应用,为企业提供更全面、准确的质检服务。

市面上有很多面向销售和客服人员的语音质检系统、文本质检系统,绝大部分产品实际使用的是基于“关键词+正则表达式”的机器质检系统。

这种方法的主要优点是部署和上手使用都比较快,主要缺点是存在非常严重的漏检情况。就像一个漏孔很大的筛子一样,难以满足企业对质检的需求越来越精细、对质检效率要求越来越高的发展趋势。

因此,在“关键词+正则表达式”之外,我们开始越来越多地为客户提供基于“语义点+机器学习”方案,并且在实际使用中为很多质检项带来 2~10 倍的效果提升。也就是说,能够多发现 2~10 倍的问题。对于企业而言,这就意味着他们可以更快、更全面地提升服务质量或者实现合规升级。

下一代机器质检:从关键词到语义点

语音和文本质检的主要任务是找出不合格、不合规的地方,即减分项,通常也被称为“负向质检”(另有一种任务是找出做得好的地方,即加分项,通常也被称为“正向质检”)。企业使用传统基于“关键词+正则表达式”的产品做质检,所遇到的最主要问题是“找不全”,通常会漏掉很多不合格、不合规之处,导致质检效率大打折扣。

看一个实际对比的例子。某互联网公司的基础质检项“服务态度问题”,在我们的实际应用中:使用传统“关键词”方案,一天的数据中能找出 13 条,100% 是正确的;使用新的“语义点”方案,能找出 134 条,其中 72% 是对的。所以从最终正确的条数来看,新的“语义点”方案多找出了 8 倍的问题

再看一个实际的例子。“恐吓威胁”是贷后资产管理领域的基础质检项,即催收员不允许在电话里“恐吓威胁”债务人。在我们的实际应用中:使用传统“关键

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值