Java Tip 30: Polymorphism and Java

本文探讨了单一多态和多重多态的概念,并通过逐步扩展和改进Java示例,展示了如何利用多重多态来实现更灵活的设计。文章还介绍了如何通过类型安全常量和映射技术进一步优化设计。

http://www.javaworld.com/javaworld/javatips/jw-javatip30.html

This article first looks at single polymorphism and, by iteratively extending and improving an example in Java, goes on to explore multiple polymorphism in greater detail. 

In my previous Java Tip, I discussed how you can get your compiler to check that constant values are valid. As I mentioned in that tip, although the use of these constructs makes code more readable, it can lead to a series of if/else if clauses in the client code. This new Java Tip also incorporates typesafe constants and a technique that can be used to remove the aforementioned condition checking.

Single polymorphism

Single polymorphism is achieved by method overriding. Listing 1 provides an example of single polymorphism, demonstrating how classes that implement the Traceable interface simply write their current state to System.out. Instances of Traceable can be registered with the TraceManager, which will invoke the Trace() method on each of these instances in TraceAll().

Listing 1: Single polymorphism


public interface Traceable
{
      public void Trace();
}
public class Foo implements Traceable
{
      public void toString()  {/* return state of object*/};
      public void Trace()
      {
            System.out.println( this ); 
      }
}
public class TraceManager
{
      public void Register( Traceable item ) {  }
      public void TraceAll() 
      {
            /* iterate all Traceable objects and invoke
            Trace()*/
      }
}


The code in Listing 1 works fine if you only want to trace your objects to System.out. However, if you then wanted to trace these objects to a logfile or via a socket, you're in trouble! A bad solution would be to define a set of interfaces, one for each type, as show in Listing 2.

Listing 2: Defining a set of interfaces


public interface  SystemTraceable { public void Trace();}
public interface LogFileTraceable { public void Trace();}
public interface SocketTracable { public void Trace();}


What's the problem with this approach? You have to implement a new interface each time your requirements change, resulting in a proliferation of interfaces and classes which can make a design difficult to understand and extend.

Multiple polymorphism

Multiple polymorphism is when an abstract class uses another abstract class. Listing 3 shows how multiple polymorphism solves the problem introduced in Listing 2. An OutputDevice abstraction has been introduced for traceable objects to write to. With this design, any traceable object can write to any OutputDevice.

Listing 3: Multiple polymorphism


public interface OutputDevice
{
      public void Write( String out );
}
public class SystemOutput implements OutputDevice
{
      public void Write( String out )
      {
            System.out.println( out );
      }
}
public class LogFileOutput implements OutputDevice {/* impl */ }
public interface Traceable
{
      public void Trace( OutputDevice device);
}
public class Foo implements Traceable
{
      public void toString()  {/* return state of object*/};
      public void Trace( OutputDevice device)
      {
            device.Write( toString ); 
      }
}
public class TraceManager
{
      public void Register( Traceable item ) {  }
      public void TraceAll( OutputDevice device) 
      {
            /* iterate all Traceable
            objects and invoke Trace( device )*/
      }
}


Using multiple polymorphism leads to a more scalable and extensible design. As new OutputDevice classes are identified and implemented, the TraceManager class remains unaltered -- as do the classes that implement Traceable.

Beyond multiple polymorphism

As illustrated and stated above, you can get designs that are more scalable and extensible with multiple polymorphism. But there is still one hurdle to overcome.

Say, for example, you now want to extend your design to allow different levels of tracing that can be altered at run time -- that is, you want to be able to specify to the TraceManager that objects should trace in "verbose" mode at one point during execution and in "minimal" mode at another. If runtime behavior changes are not required, you could consider subclassing Foo in Listing 1 to implement a "verbose" Trace(), "minimal" Trace(), and so on, and then register the appropriate subclass instances with TraceManager. As with the example in Listing 2, a proliferation of subclasses can lead to a design that is difficult to understand and extend. Listing 4 illustrates one approach to solving this problem.

Listing 4: Solving the design problem


public class Mode
{
      private Mode() {}
      public static final MINIMAL = new Mode();
      public static final VERBOSE = new Mode();
      //
}
//OutputDevice as in Listing 3.
public interface Traceable 
{
      public void Trace( OutputDevice device, Mode mode);
}
public class Foo implements Traceable
{
      private void MinimalTrace(OutputDevice device){/* write state to
device*/}
      private void VerboseTrace(OutputDevice device){/* write state to
device*/}
      public void Trace( OutputDevice device, Mode mode)
      {
            if(Mode.MINIMAL==mode)

MinimalTrace( device ); else if(Mode.VERBOSE==mode) VerboseTrace( device ); } } public class TraceManager { public void Register( Traceable item ) { } public void TraceAll( OutputDevice device, Mode mode) { /* iterate all Traceable objects and invoke Trace( device, mode ) */ } }


typesafe constant class has been added to the program to specify the current mode. TraceManager delegates the mode parameter along with the OutputDevice to the traceable objects. Foo now has to check the mode parameter to determine the appropriate level of tracing to perform.

This design works well, and it leads me neatly back to a question I addressed in my previous tip on type safe constants -- how can you eliminate the if/else if clause associated with enumerated parameters?

Those readers who have progressed from C to C++ and now to Java may be familiar with a technique that was used in C (before C++ became mainstream) to eliminate giant switch statements by mapping an enum to a pointer-to-function in a table. If you are not familiar with pointer syntax in C, don't worry: Listing 5 simply demonstrates a mapping from an enumerated type to a function.

Listing 5: Mapping from enumerated types to function pointers in C


void Func1() {}
void Func2() {}
//etc
enum{TYPE1,TYPE2,MAX};
void GiantSwitch( int type )
{
      switch( type )
      {
            case TYPE1  : Func1();break;
            case TYPE2  : Func2();break;
            //etc
      }
}
//would become
typedef void (*PFUNC)();
PFUNC funcTable[ MAX ];
void Init()
{
      funcTable[ TYPE1 ] = Func1();
      funcTable[ TYPE2 ] = Func2();
      //..etc
}
void NoSwitch( int type )
{
      //range check
      funcTable[ type ] ();
}


Those of you who have come to Java directly from C++ may be interested in experimenting with C structs with embeddedfuncTables to emulate C++ virtual functions.

Anyway, back to the plot!

As Java doesn't have functions or pointers to functions, we can't port the C code to Java. However, Listing 5 demonstrates a mapping from an enumerated type to a function, and Listing 6 shows you how to achieve the same effect in Java.

Listing 6: Improving the design



//everthing else the same as Listing 4. public class Foo implements Traceable { private Hashtable map = new Hashtable(); private class MinimalTrace implements Traceable {/* impl */} private class VerboseTrace implements Traceable {/* impl */} public Foo() { //initialize map map.put( Mode.MIMINAL, new MinimalTrace() ); map.put( Mode.VERBOSE, new VerboseTrace() ); } public void Trace( OutputDevice device, Mode mode) { Traceable t=(Traceable)map.get( mode ); t.Trace( device ); } }


Foo now has innerclasses that implement the different levels ofTrace() and uses a Hashtable to map the Mode to the implementation class. To improve the efficiency of the Trace() method, we can introduce a currentMode instance variable with an associatedcurrentImpl to avoid the overhead of the Hashtable.get() method, as shown in Listing 7.

Listing 7: Improving efficiency


public class Foo implements Traceable
{
      private Mode currentMode;
      private Traceable currentImpl;
      private Hashtable map = new Hashtable();
      private class MinimalTrace implements Traceable {/* impl */}
      private class VerboseTrace implements Traceable {/* impl */}
      public Foo()
      {
            //init map as Listing 6
            //assign currentMode and currentImpl to a default
      }
      public void Trace( OutputDevice device, Mode mode )
      {
            if(mode!=currentMode)
            {
                  currentMode=mode;
                  currentImpl=(Traceable)map.get( mode );
            }
            currentImpl.Trace( device );
      }
}


One final area of improvement would be to defer the instantiation of the implementation classes until the classes are required, a technique known as lazy instantiation. I will discuss lazy instantiation in depth in a future article, including how the implications and benefits for Java differ from those for C++.

I will leave it as an exercise for the reader to modify the design of Foo to incorporate lazy instantiation.

About the author

Philip Bishop is technical director and a consultant at Eveque Systems Ltd in the U.K. Eveque Systems specializes in the design and implementation of distributed object systems using Java, CORBA, C++, ODBMS, and so on.
同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值