AAC家族命名

AAC 家族之名称和算法名称
  
  AAC 经常让大家摸不到头脑,而且很多工具对 AAC 版本的叫法千奇百怪,甚至有些编码器/播放器甚至
  误导大家。例如 有些将 HE AAC 认作 AAC-LC, 其实也没有错,但是很不精确。 下面是一份对AAC家族相关
  叫法的一个明确:
  
   AAC = MPEG2 AAC ~= MP3 + TNS + TP (It is not an upgrade of MP3 since it is not backward compatible but uses all MP3's features in a better way).
  
  MPEG4 AAC = MPEG2 AAC + LTP + PNS
  There are several profliles depending on the decoding/encoding complexity, required power, delay, bandwith characteristics, error resilience characteristics, etc... The most used profile in the PC arena is the AAC LC (Low Complexity) = MPEG4 AAC without LTP.
  
  HE-AAC = SBR + AAC LC
   Coding Technologies, developers of SBR, named this coding aacPlus™, also known as AAC+, HE-AAC, AACP, AAC-LC+SBR, etc... SBR technology was prevously introduced in the MP3pro codec.
  
  HE-AAC v2= PS + HE-AAC
   Coding Technologies, developers of the MPEG Parametric Stereo, named this coding aacPlus™ v2 as a new revision of the previous release. It is also known as AAC++, EAAC+, Enhanced HE-AAC, EAACP, HE-AAC+PS, etc... Recently it was standarized by ISO as HE-AAC v2.
  
  S-AAC...(Just guessing, not yet released but in Reference Model 0 stage)
   Since MPEG is focusing in multichannel, the next standard will be something based in the Spatial Audio Coding tool standarized as MPEG Surround, that allows to do someting similar to PS but aimed to 5.1ch or 7.1ch content. This could be named as S-AAC, AAC Surround or AACS, Surround HE-AAC, [Put your favorite name here]. There isn't an official name for it yet.
  
  Terms and acronyms:
  
  AAC Advanced Audio Coding, developed by Dolby Laboratories.
  
   TNS Temporal Noise Shaping is a tool designed to control the location, in time, of the quantization noise by transmission of filtering coefficients.
  
  TP Temporal Prediction is a tool designed to enhance compressibility of stationnary signals.
  
   LTP Long Term Prediction is once again a prediction tool. This one requires less computation power but it is far more complex than the one used in MPEG-2 AAC, while providing comparable coding performance.
  
   PNS Perceptual Noise Substitution, allows to replace coding of noise-like parts of the signal by some noise generated on the decoder side, so the decoding result is not deterministic among multiple decoding processes of the same encoded data.
  
  SBR Spectral Band Replication is a tool that creates associated higher frequency content based on the lower frequencies and coding it as statistical information: level, distribution and ranges. Each of these parameters is encoded separately, taking account of their distinctive characteristics. It involves reconstruction of a noise-like frequency spectrum by employing a noise generator with some statistical information (level, distribution, ranges), so the decoding result is not deterministic among multiple decoding processes of the same encoded data. Both ideas are based on the principle that the human brain tends to consider high frequencies to be either harmonic phenomena associated with lower frequencies or noise, and is thus less sensitive to the exact content of high frequencies in audio signals.
  
  PS Parametric Stereo, the stereo image information is separated from the mono signal being represented as a small amount of high quality parametric stereo information. The scheme relies on dissecting the incoming audio signal into three ‘objects’ that are a common constituent of all audio signals: transients, sinusoids and noise The stereo information is efficiently parameterized. Each of these objects is encoded separately, taking account of their distinctive characteristics. Like PNS and SBR the decoding result is not deterministic among multiple decoding processes of the same encoded data. 
  
  SAC Spatial Audio Coding exploits inter-channel differences in level, phase and coherence to capture the spatial image of a multi-channel audio signal relative to a transmitted downmix signal. It encodes each of these cues separately taking account of their distinctive characteristics such that the cues, and the transmitted signal, can be decoded to synthesize a high quality multi-channel representation allowing higher compression than separate channel coding. 
内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值