HDOJ 5723 (2016多校联合训练 Training Contest 1) Abandoned country

本文介绍了一道关于最小生成树及其上两两点间距离期望值的问题,通过唯一权值的特点,采用Kruskal算法找到最小生成树,并利用DFS遍历求解所有边的贡献,最终得出期望距离。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5723


多校第一场就分数爆零,这是我们队比赛里面唯一过的一题TT。

题意:给我们n个点和m条边,然后问我们最小生成树以及最小生成树上两两点之间距离的期望值。

期望值很显然就是所有两两点之间的距离和除上总共的选择数(n*(n-1)/2)。

一开始没有看见每一条边的权值都是唯一的,想了好久如果存在不同的最小生成树的话该怎么搞=.=,既然权值唯一,那么最小生成树就唯一,期望值也就唯一,接下来算期望,这个也不算太简单,如果每一对我们都去搜一遍肯定超时,所以我们必须得转换这个问题,我们可以思考一条边用到了几次。首先,如果一条边的一侧有sum[i]个点,那么另一边就有n-sum[i]个点,那么这两边的组合数就是sum[i]*(n-sum[i])也就是说这条就用 这么多次。因为是树的结构,我们从任意一点出发,只要不走回头路,我们就可以遍历整棵树,我看有些人用到了vis数组来记录,其实是完全没有必要的,我们一边搜索一边记录就可以得到答案。

#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 100000+5;
LL set[maxn], n;
int sum[maxn];
double dp[maxn];
struct Edge
{
	int u,v,w;
	Edge(int _u,int _v,int _w):u(_u),v(_v),w(_w){}
};
struct Node
{
	int v,len;
	Node(int _v,int _len) : v(_v), len(_len){}
};
vector<Edge> edge;
vector<Node> vec[maxn];
int cmp(Edge a,Edge b)
{
	return a.w < b.w;
}
inline void addEdge(int u,int v,int w)
{
	vec[u].push_back(Node(v, w));
	vec[v].push_back(Node(u, w));
}
inline int find(int r)
{
	return set[r]==r? r : set[r]=find(set[r]);
}
inline LL merge(int a,int b,int w)
{
	int x = find(a);
	int y = find(b);
	if(x == y) return 0;
	set[x] = y;
	addEdge(a, b, w);
	return (LL)w;
}
LL Kruskal()
{
	sort(edge.begin(), edge.end(), cmp);
	LL ans = 0;
	for(int i=0; i<edge.size(); i++)
		ans += merge(edge[i].u, edge[i].v, edge[i].w);
	return ans;
}
void dfs(int root,int father)
{
	sum[root] = 1;
	for(int i = 0;i < (int)vec[root].size();i++)
    {
    	int son = vec[root][i].v;
    	int len = vec[root][i].len;
    	if(son == father)continue;
    	dfs(son,root);
    	sum[root] += sum[son];
    	dp[root] += dp[son] + (double)(sum[son] * (n - sum[son])) * len;
	}
}
int main()
{
	//freopen("1001.in","r",stdin);
	int T;
	scanf("%d", &T);
	while(T--)
	{
		int m;
		scanf("%I64d%d", &n, &m);
		edge.clear();
		for(int i=0; i<m; i++)
		{
			int u,v,w;
			scanf("%d%d%d", &u,&v,&w);
			edge.push_back(Edge(u,v,w));
		}
		for(int i=1; i<=n; i++) set[i] = i,vec[i].clear();
		LL ans = Kruskal();
		memset(sum,0,sizeof(sum));
		memset(dp,0,sizeof(dp));
		dfs(1, 0);
		double tmp = (n*(n-1))/2;
		printf("%I64d %.2lf\n", ans, (double)dp[1]/tmp);
	}
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值