题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1494
跑跑卡丁车,中文题,题意不再赘述。每次小编在写DP题解的时候都会加上一句,DP问题是个玄学,这道题也是一样,在输入方面每一个路段都有两个值,是不是和背包问题很像啊,每一个东西都有一个体积和价值,当然,这道题肯定不是简单的01背包那么简单,这题特殊的一些条件肯定在转移方程上会有所不同,我们要同时考虑用能量卡和不用能量卡两种情况,由于在能量卡满的情况下,还会出现清零,所以还要再考虑一种情况,所以一共三种情况。
dp[i][j+1] = min(dp[i][j+1], dp[i-1][j]+a[(i-1)%L]);不用能量卡
dp[i][j-5] = min(dp[i][j-5], dp[i-1][j]+b[(i-1)%L]);使用能量卡
dp[i][10] = min(dp[i][10], dp[i][15]);能量卡有两张的情况下能量集满
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 10000+10;
int a[110],b[110];
int dp[maxn][20];
int main()
{
int L,N;
while(scanf("%d%d",&L,&N)!=EOF)
{
for(int i=0; i<L; i++)
scanf("%d",&a[i]);
for(int i=0; i<L; i++)
scanf("%d",&b[i]);
int sum = L*N;
for(int i=0; i<=sum; i++)
for(int j=0; j<=15; j++)
dp[i][j] = INF;
dp[0][0] = 0;
for(int i=1; i<=sum; i++)
{
for(int j=14; j>=0; j--)// 不使用能量卡
dp[i][j+1] = min(dp[i][j+1], dp[i-1][j]+a[(i-1)%L]);
for(int j=14; j>=5; j--)// 使用能量卡
dp[i][j-5] = min(dp[i][j-5], dp[i-1][j]+b[(i-1)%L]);
dp[i][10] = min(dp[i][10], dp[i][15]);//能量卡有两张的情况下能量集满
}
int ans = INF;
for(int i=0; i<15; i++)
ans = min(ans, dp[sum][i]);
printf("%d\n",ans);
}
return 0;
}