Sample Input
4 2
3 1 2 3
2 3 4
Sample Output
100
题目大意:
给定 n, m.
之后m行,每行是一个集合。
每一个集合里任意两个元素之间的距离都是1.
最后求出一个点,这个点到其余所有点的距离和最小,即
求ans令 ∑dis[ans][i] 最小 (1=<i<=n 且i不等于ans)
然后输出平均距离(乘100倍保留整数),
即 sum / (n-1) * 100
解题思路:
奇怪的建表方式+Floyd算法
AC代码:
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int path[301][301];
int worked[301];
#define INF 0x3fffffff
void init() {
for (int i = 1; i <= 300; i++) {
for (int j = 1; j <= 300; j++) {
path[i][j] = INF;
}
path[i][i] = 0;
}
}
int main() {
int n, m;
while (cin >> n >> m) {
init();
while (m--) {
int num, a;
cin >> num;
for (int i = 1; i <= num; i++) {
cin >> worked[i];
}
for (int i = 1; i < num; i++) {
for (int j = i + 1; j <= num; j++) {
path[worked[i]][worked[j]] = 1; path[worked[j]][worked[i]] = 1;
}
}
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (path[i][k] == INF || path[k][j] == INF) continue;
if (path[i][j] == INF || path[i][j] > path[i][k] + path[k][j]) {
path[i][j] = path[i][k] + path[k][j];
}
}
}
}
int ans = INF;
for (int k = 1; k <= n; k++) {
int tmp = 0;
for (int l = 1; l <= n; l++) {
tmp += path[k][l];
}
ans = min(ans, tmp);
}
//cout << ans << endl;
cout << ans * 100 / (n - 1) << endl;
}
}

本文介绍了一个使用Floyd算法解决最短路径问题的编程挑战。通过给定的集合,构建图并计算任意两点间距离,最终找出使得所有点到该点距离之和最小的节点,并计算平均距离。
3061

被折叠的 条评论
为什么被折叠?



