POJ3522 - Slim Span (Japan 2007)

本文深入探讨了深度学习与人工智能的核心概念及其在实际应用中的重要性。通过详细解析深度神经网络、卷积神经网络、循环神经网络等关键算法,揭示了它们如何在计算机视觉、自然语言处理等领域实现突破性进展。此外,文章还讨论了强化学习在智能决策系统中的应用,以及数据挖掘技术在大规模数据集分析中的作用。

Slim Span
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 6914 Accepted: 3658

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

nm 
a1b1w1
  
ambmwm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

求给定图的生成树的最大边与最小边之差的最小值。


先对所有边排序,然后对每个区间[L, R]求MPT。

#include <cstdio>
#include <algorithm>
#include <vector>
#include <climits>

using namespace std;

struct route {
	int from;
	int to;
	int val;
	route(int _f, int _t, int _v): from(_f), to(_t), val(_v) {}
	bool operator<(const route &b)const
	{
		return val < b.val;
	}
};

int find(int);

vector<route> routeList;
int p[110];

int main()
{
	int n, m;
	while(true) {
		int answer = INT_MAX;
		scanf("%d%d", &n, &m);
		if(!n)
			break;
		if(n == 1) {
			printf("0\n");
			continue;
		}
		routeList.clear();
		while(m--) {
			int from, to, val;
			scanf("%d%d%d", &from, &to, &val);
			routeList.push_back(route(from, to, val));
		}
		sort(routeList.begin(), routeList.end());
		for(vector<route>::iterator l = routeList.begin(); l != routeList.end(); l++) {
			int cnt = n;
			for(int i = 0; i <= n; i++)
				p[i] = i;
			for(vector<route>::iterator r = l; r != routeList.end(); r++) {
				int x = find(r->from);
				int y = find(r->to);
				if(x != y) {
					p[x] = y;
					cnt--;
				}
				if(cnt == 1) {
					answer = min(r->val - l->val, answer);
					break;
				}
			}
		}
		printf("%d\n", answer == INT_MAX ? -1 : answer);
	}
	return 0;
}

int find(int x)
{
	return p[x] == x ? x : find(p[x]);
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值