240. 搜索二维矩阵 II Java解法

本文介绍了一种在二维矩阵中高效查找特定目标值的算法。通过从矩阵的右上角或左下角开始,根据目标值与当前元素的大小关系,逐步排除行或列,最终定位目标值。此算法的时间复杂度为O(m+n),适用于目标值按行和列升序排列的矩阵。

在这里插入图片描述
示例:
现有矩阵 matrix 如下:

[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]

首先,不得不说这题和他的第一个版本的思想上是有点像的,但是又不是完全一样,因为第一版本中我们可以吧取值的范围缩小到一行当中,但是在这里是行不通的,因为这题的关键的是,最后答案的取值取值范围会呈现出一个矩形的形状分布。
这个题目的需要你从右上角的元素或者左下角的元素开始寻找。
如果目标比当前的元素大,那么就把这一行排除;如果目标值比当前的元素小,那么就把之一列给排除。
我把整个寻找的过程做了流程图,方便大家理解:
在这里插入图片描述
理清了思想,我们来看看具体的代码:

show the code.

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if (matrix == null) {
            return false;
        } else if (matrix.length == 0) {
            return false;
        } else if (matrix[0].length == 0) {
            return false;
        }
        int len = matrix.length;
        int rowLen = matrix[0].length;
        int targetCol = rowLen - 1;

        int targetRow = 0;
        while (targetRow < len && targetCol >= 0) {
            if (matrix [targetRow][targetCol] < target) {
                targetRow++;
            } else if (matrix[targetRow][targetCol] > target) {
                targetCol--;
            } else {
                return true;
            }
        }
        return false;
    }
}

时间就是O(m+n),具体来看看效果,如下截图所示,还是不错的。
在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值