题目:给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
注意:
答案中不可以包含重复的四元组。
示例:
给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。
满足要求的四元组集合为:
做了两数之和,三数之和,现在是四数之和,有点吐血哈
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
class Solution:
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
#简洁版
def findNsum(nums, target, N, result, results):
if len(nums) < N or N < 2 or target < nums[0]*N or target > nums[-1]*N: # early termination
return
if N == 2: # two pointers solve sorted 2-sum problem
l,r = 0,len(nums)-1
while l < r:
s = nums[l] + nums[r]
if s == target:
results.append(result + [nums[l], nums[r]])
l += 1
while l < r and nums[l] == nums[l-1]:
l += 1
elif s < target:
l += 1
else:
r -= 1
else: # recursively reduce N
for i in range(len(nums)-N+1):
if i == 0 or (i > 0 and nums[i-1] != nums[i]):
findNsum(nums[i+1:], target-nums[i], N-1, result+[nums[i]], results)
results = []
findNsum(sorted(nums), target, 4, [], results)
return results
nums.sort()
results = []
self.findNsum(nums, target, 4, [], results)
return results
#复杂版
# def findNsum(self, nums, target, N, result, results):
# if len(nums) < N or N < 2: return
# # solve 2-sum
# if N == 2:
# l,r = 0,len(nums)-1
# while l < r:
# if nums[l] + nums[r] == target:
# results.append(result + [nums[l], nums[r]])
# l += 1
# r -= 1
# while l < r and nums[l] == nums[l - 1]:
# l += 1
# while r > l and nums[r] == nums[r + 1]:
# r -= 1
# elif nums[l] + nums[r] < target:
# l += 1
# else:
# r -= 1
# else:
# for i in range(0, len(nums)-N+1): # careful about range
# if target < nums[i]*N or target > nums[-1]*N: # take advantages of sorted list
# break
# if i == 0 or i > 0 and nums[i-1] != nums[i]: # recursively reduce N
# self.findNsum(nums[i+1:], target-nums[i], N-1, result+[nums[i]], results)
# return