k-means 和 层次聚类的区别

本文介绍了两种常见的聚类算法——K-Means和层次聚类。K-Means算法中,先随机选取k个样本点作为初始中心,通过迭代将样本点分配到最近的簇,并更新簇中心,直至簇不再变动。层次聚类则分为凝聚型和分裂型,需要预先设定簇的数量k,其初始质心选择和时间复杂度对结果有一定影响。文中给出了两种算法的Python代码示例,并展示了聚类结果。

k-means

  • 先任取k个样本点作为k个簇的初始中心;
  • 对每一个样本点,计算它们与k个中心的距离,把它归入距离最小的中心所在的簇;
  • 等到所有的样本点归类完毕,重新计算k个簇的中心;
  • 重复以上过程直至样本点归入的簇不再变动。

别人的代码举例

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from sklearn.datasets.samples_generator import make_blobs
from sklearn import metrics
import matplotlib.pyplot as plt

x,y = make_blobs(n_samples=1000,n_features=4,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.4],random_state=10)

k_means = KMeans(n_clusters=3, random_state=10)

k_means.fit(x)

y_predict = k_means.predict(x)
plt.scatter(x[:,0],x[:,1],c=y_predict)
plt.show()
print(k_means.predict((x[:30,:])))
print(metrics.calinski_harabaz_score(x,y_predict))
print(k_means.cluster_centers_)
print(k_means.inertia_)
print(metrics.silhouette_score(x,y_predict))
————————————————
版权声明:本文为优快云博主「半路转行程序员」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值