# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import nltk.stem as ns
words = ['table', 'probably', 'wolves', 'playing',
'is', 'dog', 'the', 'beaches', 'grounded'
'dreamt', 'envision']
lemmatizer = ns.WordNetLemmatizer()
for word in words:
n_lemma = lemmatizer.lemmatize(word, pos='n')
v_lemma = lemmatizer.lemmatize(word, pos='v')
print('%20s %20s %20s' % (word, n_lemma, v_lemma))