codeforces 851d

昨晚的一道CF题,orz没想到这样的前缀和

传送门:Arpa and a list of numbers

题意:
给一个序列,有两种操作
1、删除一个数,需要花费x
2、将某个数的值增加1,需要花费y

现在要将这个序列变成空或者序列里的值gcd不等于1。
问至少要花费多少


思路:
做两个前缀和,一个用来记录有多少个数,一个用来记录到这个数的时候,和是多少。
那么我们当x >= a * y,a次增加操作的时候,使用2操作将它边到某个值,其他时候都使用1操作直接删除。

然后枚举每一个因子,因为数就只有 106 ,我们可以很好的用筛法的原理,在接近O(n)的时间复杂度下,枚举每一个数以及他们的倍数。
对于每一个倍数j到这个倍数减去因数i的这个区间里,可以做2操作的数,我们可以直接通过前缀和得到有多少个数,且他们的数的和是多少,再减去他们原本值的和,乘上y,就是将这些数变成j的花费。剩下的数都进行1操作,把他们都删掉,乘上x即可。

这里要特别注意的是。

题目给的是 106 但是他的可到倍数可能不止 106 ,可以枚举多一倍
#include <bits/stdc++.h>

#define MAXN 2000005
#define ll long long

using namespace std;

ll s1[MAXN];
ll s2[MAXN];

int main() {
    ll n, x, y, a;
    scanf("%lld %lld %lld", &n, &x, &y);
    ll p = (ll)(x * 1.0 / y) + 1;
    for (ll i = 1; i <= n; i++) {
        scanf("%lld", &a);
        s1[a]++;
        s2[a] += a;
    }
    for (ll i = 1; i < MAXN; i++) {
        s1[i] += s1[i - 1];
        s2[i] += s2[i - 1];
    }
    ll ans = MAXN * n * y;
    for (ll i = 2; i < MAXN; i++) {
        ll tot = 0;
        for (ll j = i; j < MAXN && tot < ans; j += i) {
            ll k = max(j - i, j - p);
            tot += ((s1[j] - s1[k]) * j - (s2[j] - s2[k])) * y + (s1[k] - s1[j - i]) * x;
        }
        ans = min(tot, ans);
    }
    printf("%lld\n", ans);
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值