网格搜索GridSearchCV参数方法详细解析

GridSearchCV是机器学习中用于参数调优的重要工具,通过交叉验证的方式寻找最佳参数组合。它适用于小数据集,但随着参数数量增加,计算复杂度呈指数增长。本文详细介绍了GridSearchCV的参数、属性和常用方法,并通过波士顿房价预测案例展示了其实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、简介

  官网:GridSearchCV的sklearn官方网址
  GridSearchCV的名字其实可以拆分为两部分,GridSearch和CV,即网格搜索和交叉验证。网格搜索,搜索的是参数,即在指定的参数范围内,按步长依次调整参数,利用调整的参数训练学习器,从所有的参数中找到在验证集上精度最高的参数,这其实是一个训练和比较的过程。
  GridSearchCV可以保证在指定的参数范围内找到精度最高的参数,但是这也是网格搜索的缺陷所在,他要求遍历所有可能参数的组合,在面对大数据集和多参数的情况下,非常耗时。这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果。网格搜索适用于三四个(或者更少)的超参数(当超参数的数量增长时,网格搜索的计算复杂度会呈现指数增长,这时候则使用随机搜索),用户列出一个较小的超参数值域,这些超参数至于的笛卡尔积(排列组合)为一组组超参数。网格搜索算法使用每组超参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清木!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值