本文提供了一个基于预训练隐马尔可夫模型(HMM)的汉语拼音序列转汉字语句序列程序。
项目原理(此处不过多赘述)
本项目基于 隐马尔可夫模型 (HMM) 实现汉语拼音序列到汉字序列的转换。HMM是一种概率模型,用以解决序列到序列问题。假设观察序列(拼音)由隐藏状态序列(汉字)生成,并通过状态转移和发射概率描述序列关系。模型训练时,程序首先加载训练数据,提取拼音和汉字构建词汇表,并统计初始状态、状态转移和发射概率矩阵。训练过程中,HMM使用最大似然估计优化这些概率,以捕捉拼音与汉字的映射关系。解码阶段,利用维特比算法(Viterbi Algorithm)寻找最可能的汉字序列作为输出结果。本项目适合处理语言序列建模和序列标注等的任务。
数据集准备
- 需要`CSV`格式文件,其应包含两列,要求第一列为由汉语拼音构成的句子,第二列为由汉字构成的句子。我们公开了用于训练该种模型的一套数据集,开源地址为:https://huggingface.co/datasets/Duyu/Pinyin-Hanzi (Hugging Face),https://www.kaggle.com/datasets/duyu09/pinyin-hanzi (Kaggle)
当然,也可以使用符合条件的自己的数据集。 - 数据集示例:
第一列 (汉字序列) | 第二列 (拼音序列) |
---|---|
我们试试看! | wo3 men shi4 shi4 kan4 ! |
我该去睡觉了。 | wo3 gai1 qu4 shui4 jiao4 le 。 |
你在干什么啊? | ni3 zai4 gan4 shen2 me a ? |
这是什么啊? | zhe4 shi4 shen2 me a ? |
我会尽量不打扰你复习。 | wo3 hui4 jin3 liang4 bu4 da3 rao3 ni3 fu4 xi2 。 |
运行环境
基于`Python 3.x`,版本不限,需要`numpy`、`pandas`、`hmmlearn`库,参考以下命令安装:
python3 -m pip install numpy pandas hmmlearn
- 硬件环境:假设训练语料数据包含 2.65 万个不同的汉字,则推理至少需要 6GB 左右的内存,训练至少需要 8GB 左右的内存。
训练和推理方法
修改`py2hz.py`的主函数代码以运行。我们已开源了基于多领域文本的预训练的模型权重`hmm_model.pkl.bz2`和`hmm_model_large.pkl.bz2`,可以直接使用。`hmm_model.pkl.bz2`规模稍小,可满足日常汉语的转换需求,其解压缩后约为 800MB 左右;`hmm_model_large.pkl.bz2`覆盖了几乎所有汉字的读音,并在规模更大的语料库上进行训练,其解压缩后约为 4.5GB 左右。
若需自行训练则取消train函数的注释,并修改函数参数。训练完成后模型将会被压缩保存,原因是模型中存在非常稀疏的大矩阵,适合压缩存储。
程序代码
按照前文所述的方法即可运行。
# _*_ coding:utf-8 _*_
"""
@Version : 1.2.0
@Time : 2024年12月29日
@Author : DuYu (@duyu09, 202103180009@stu.qlu.edu.cn)
@File : py2hz.py
@Describe : 基于隐马尔可夫模型(HMM)的拼音转汉字程序。
@Copyright: Copyright (c) 2024 DuYu (No.202103180009), Faculty of Computer Science & Technology, Qilu University of Technology (Shandong Academy of Sciences).
@Note : 训练集csv文件,要求第一列为由汉语拼音构成的句子,第二列为由汉字构成的句子。
"""
import re
import bz2
import pickle
import numpy as np
import pandas as pd
from hmmlearn import hmm
# 1. 数据预处理:加载CSV数据集
def load_dataset(file_path):
data = pd.read_csv(file_path)
sentences = data.iloc[:, 0].tolist() # 第一列:汉字句子
pinyins = data.iloc[:, 1].tolist() # 第二列:拼音句子
return sentences, pinyins
# 分词函数,确保英文单词保持完整
def segment_sentence(sentence):
tokens = re.findall(r'[a-zA-Z]+|[一-鿿]', sentence) # 使用正则表达式分割句子,确保英文单词保持完整
return tokens
# 2. 构建字典和状态观测集合
def build_vocab(sentences, pinyins):
hanzi_set = set()
pinyin_set = set()
for sentence, pinyin in zip(sentences, pinyins):
hanzi_set.update(segment_sentence(sentence))
pinyin_set.update(pinyin.split())
hanzi_list = list(hanzi_set)
pinyin_list = list(pinyin_set)
hanzi2id = {h: i for i, h in enumerate(hanzi_list)}
id2hanzi = {i: h for i, h in enumerate(hanzi_list)}
pinyin2id = {p: i for i, p in enumerate(pinyin_list)}
id2pinyin = {i: p for i, p in enumerate(pinyin_list)}
return hanzi2id, id2hanzi, pinyin2id, id2pinyin
# 3. 模型训练
def train_hmm(sentences, pinyins, hanzi2id, pinyin2id):
n_states = len(hanzi2id)
n_observations = len(pinyin2id)
model = hmm.MultinomialHMM(n_components=n_states, n_iter=100, tol=1e-4)
# 统计初始状态概率、转移概率和发射概率
start_prob = np.zeros(n_states)
trans_prob = np.zeros((n_states, n_states))
emit_prob = np.zeros((n_states, n_observations))
for sentence, pinyin in zip(sentences, pinyins):
# print(sentence, pinyin)
hanzi_seq = [hanzi2id[h] for h in segment_sentence(sentence)]
pinyin_seq = [pinyin2id[p] for p in pinyin.split()]
# 初始状态概率
if len(hanzi_seq) == 0:
continue
start_prob[hanzi_seq[0]] += 1
# 转移概率
for i in range(len(hanzi_seq) - 1):
trans_prob[hanzi_seq[i], hanzi_seq[i + 1]] += 1
# 发射概率
for h, p in zip(hanzi_seq, pinyin_seq):
emit_prob[h, p] += 1
# 确保矩阵行和为1,并处理全零行
if start_prob.sum() == 0:
start_prob += 1
start_prob /= start_prob.sum()
row_sums = trans_prob.sum(axis=1, keepdims=True)
zero_rows = (row_sums == 0).flatten() # 修复索引错误
trans_prob[zero_rows, :] = 1.0 / n_states # 用均匀分布填充全零行
trans_prob /= trans_prob.sum(axis=1, keepdims=True)
emit_sums = emit_prob.sum(axis=1, keepdims=True)
zero_emit_rows = (emit_sums == 0).flatten()
emit_prob[zero_emit_rows, :] = 1.0 / n_observations # 均匀填充
emit_prob /= emit_prob.sum(axis=1, keepdims=True)
model.startprob_ = start_prob
model.transmat_ = trans_prob
model.emissionprob_ = emit_prob
return model
# 4. 保存和加载模型
def save_model(model, filepath, mode='compress'): # mode='normal'意味着不使用压缩
if mode == 'normal':
with open(filepath, 'wb') as f:
pickle.dump(model, f)
else:
with bz2.BZ2File(filepath, 'wb') as f:
pickle.dump(model, f)
def load_model(filepath, mode='compress'): # mode='normal'意味着不使用压缩
if mode == 'normal':
with open(filepath, 'rb') as f:
return pickle.load(f)
else:
with bz2.BZ2File(filepath, 'rb') as f:
return pickle.load(f)
def train(dataset_path='train.csv', model_path='hmm_model.pkl.bz2'):
sentences, pinyins = load_dataset(dataset_path) # 加载数据集
hanzi2id, id2hanzi, pinyin2id, id2pinyin = build_vocab(sentences, pinyins) # 构建字典
model = train_hmm(sentences, pinyins, hanzi2id, pinyin2id) # 训练模型
model.pinyin2id = pinyin2id
model.id2hanzi = id2hanzi
model.hanzi2id = hanzi2id
model.id2pinyin = id2pinyin
save_model(model, model_path) # 保存模型
def pred(model_path='hmm_model.pkl.bz2', pinyin_str='ce4 shi4', n_trials=3):
model = load_model(model_path)
pinyin_list = pinyin_str.split()
pinyin2id, id2hanzi = model.pinyin2id, model.id2hanzi
obs_seq = np.zeros((len(pinyin_list), len(pinyin2id))) # 转换观测序列为 one-hot 格式
for t, p in enumerate(pinyin_list):
if p in pinyin2id:
obs_seq[t, pinyin2id[p]] = 1
else:
obs_seq[t, 0] = 1 # 未知拼音默认处理
# 解码预测
model.n_trials = n_trials
log_prob, state_seq = model.decode(obs_seq, algorithm=model.algorithm)
result = ''.join([id2hanzi[s] for s in state_seq])
print('预测结果:', result)
if __name__ == '__main__':
# train(dataset_path='train.csv', model_path='hmm_model_large.pkl.bz2')
pred(model_path='hmm_model_large.pkl.bz2', pinyin_str='hong2 yan2 bo2 ming4') # 预测结果:红颜薄命
预训练模型效果
下表展示了预训练模型`hmm_model_large.pkl.bz2`的使用效果。
输入 | 输出 |
---|---|
hong2 yan2 bo2 ming4 | 红颜薄命 |
guo2 jia1 chao1 suan4 ji3 nan2 zhong1 xin1 | 国家超算济南中心 |
liu3 an4 hua1 ming2 you4 yi1 cun1 | 柳暗花明又一村 |
gu3 zhi4 shu1 song1 zheng4 | 骨质疏松症 |
xi1 an1 dian4 zi3 ke1 ji4 da4 xue2 | 西安电子科技大学 |
ye4 mian4 zhi4 huan4 suan4 fa3 | 页面置换算法 |
作者声明及开源地址
Author: Du Yu (@duyu09, 202103180009@stu.qlu.edu.cn),
Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences).
Repository:https://github.com/duyu09/Pinyin2Hanzi_HMM
感谢您的阅览!