全网最全拆解!Agent核心原理:LLM+工具+记忆+规划,一篇带你从入门到精通!

我去阅读了Agent相关的论文,又试用了现有的Agent产品,有众所周知的独立Agent:如manus、loveart,也有嵌入现有App的Agent:如夸克搜索Agent、飞猪旅行Agent、淘宝AI万能搜等。

我发现独立Agent一般都“高调登场”,尽其所能向全世界宣布“我来了!”

而大厂现有产品中的Agent功能上线普遍比较“低调”,一定会经过长时间的内测、灰度,才会小范围上线,例如“淘宝AI万能搜”至少是在半年前就听说在做,至今才上线。

虽然“淘宝AI万能搜”没有特别惊艳,但整体的使用体验,在各类导购型Agent中,算是数一数二的了,下图有入口,大家有兴趣可体验。

在淘宝点击搜索框,再退出,再进入就会出现了。

接下来,我会拆解一下 Agent 的组成结构:包括它是怎么规划任务的、怎么调用工具执行、又是如何记住上下文和偏好的。这不仅是理解 Agent 的方式,也是一种全新的产品设计范式。

首先,我们可以把 Agent 想成是一个终于长出了“手脚”和“记忆”的大模型,是一个能完成复杂任务、能打配合、还能持续优化执行路径的**“数字助理”**。

它的基本组成有 4 个关键部件:大模型( LLM )、工具使用(Tools)、记忆(Memory)、规划能力(Plan)。

LLM:Agent 的“大脑”

在聊 Agent 是怎么动手干活之前,我们得先搞清楚一个问题:Agent 到底是怎么“理解人话”的?

答案就是——它的“大脑”是 LLM(大语言模型)

LLM 是什么?

LLM,全称是 Large Language Model(大语言模型),简单来说,它是一个在海量文本上训练出来的“预测机器”——你输入一句话,它预测你可能想听什么,输出相应的内容。

那它是怎么预测的呢? 本质上,LLM 是基于上下文预测下一个词的概率模型。它不会“理解”你说了什么(它没有真正的意识),但它非常擅长从大量语言数据中学习出哪些词是“最可能”出现在当前语境后面的。

举个简单的例子:

假设你对 LLM 说了一句话开头:

“我今天早上喝了一杯……”

它会从它学过的海量数据中判断,这个位置最有可能出现的词是什么?

“咖啡” → 可能性 42%“奶茶” → 可能性 27%“白开水” → 可能性 12%“酒” → 可能性 3%“电视” → 可能性 0.01%(不合常理)

于是,模型就选了概率最高的词 —— “咖啡”。

下一步,它再接着预测下一个词,比如:

“我今天早上喝了一杯咖啡,然后……”

“去” → 32%“就” → 25%“感觉” → 20%“跑” → 10%

就这样一个词一个词地接下去,每一步都在预测“最有可能”出现的词。这也解释了 LLM 的一个典型特性:它不是“在思考”,而是根据概率生成最合理的内容。

那LLM和 Agent 有什么不同?

虽然 LLM 听起来就已经很厉害,但它其实像是一个**天赋极高但不具备行动能力的智者(类似于《权力的游戏》中布兰·史塔克),**你让它分析,它能讲得头头是道;但让它去干活,比如查实时票价、登录网站、下订单……它就祭了。

一句话总结它们的区别:

为什么我们需要 Agent?

在真实世界中,我们做的事情往往是「多步骤+跨工具+有明确目标」的,比如:

想写一篇竞品分析报告 → 需要查询多个网站 → 提炼关键信息 → 写文章/写PPT

想订一张机票 → 需要查航班 → 比价 → 下单 → 记录日程

如果 AI 只会告诉你怎么做,而不能替你去做,等于你还是得一个个页面点,一个个 app 切换,根本没有省下多少精力。

而 Agent 就是为了实现“从知道怎么做 → 真的帮你做”而诞生的。它以 LLM 为“核心”,再配上工具调用、任务规划、上下文记忆能力,最终进化成的一个可以自主完成任务的数字助理。

Tools:Agent 的“手脚”

如果说 LLM 是 Agent 的“大脑”,那 Tools 就是它的“手脚”——真正能下场干活的部分。

为什么需要工具?

LLM 虽然能回答很多问题,但它本质上是个封闭系统。它的知识截止于训练时间,不能联网、不能读网页、不能主动获取最新的数据。你问它“明天北京天气怎么样”,它只能说“我无法访问实时信息”。

但换个方式:让它调用一个天气 API,它就能给你答得头头是道。

工具是补上 LLM 无法“感知现实世界”的那一块短板,让它不止能说,还能查、能干、能动。

常见的 Agent 工具类型有哪些?

典型工具调用案例:

GPT + Bing 浏览器插件:用户问“最新的iPhone15什么时候发布”,模型就能自动调用 Bing 搜索 API 来实时抓网页、读内容、生成摘要,信息比默认 LLM 更新、更准确。

携程问道:当用户说“帮我找一张下周去广州的便宜机票”,它会调用航旅票务系统获取实时航班信息->查询用户评价、机型舒适度->返回结构化选项卡(含票价、时间、直飞/中转等标签)。

Memory:Agent 的“记忆”

当用户告诉 AI 要去成都玩 3 天、预算 2000、喜欢住民宿、不吃辣,它会立马埋头开始规划,但下一轮用户补充一句“酒店预算可以放宽点”,它若回复:“您要订哪里的酒店?**”**用户会不会很崩溃?

这正是没有“记忆能力”的 Agent 经常暴露出的尴尬瞬间。

因此真正能完成完整任务的 Agent,往往都拥有一定程度的记忆能力,而这份“记性”,是它能否从“工具”升级为“助理”的关键。

Agent 记忆可以分为三类:

  1. 短期记忆

定义:短期记忆主要通过上下文学习实现,上下文学习指的是利用Prompt中包含的相关信息来改善生成结果的能力。

局限性:上下文窗口的长度限制了LLM可以有效利用的短期记忆容量。当输入Prompt过长时,LLM可能会出现“中间丢失”的现象,即模型难以有效地利用Prompt中间部分的信息。

案例:用户说“我想订去成都的票”,“下午也可以”→ LLM需要通过短期记忆知道“下午”指的是“飞成都的航班”。

  1. 长期记忆

定义:长期记忆使AI Agent能够跨多次交互存储和检索信息,提供持续性和个性化体验。虽然无法在每次对话中将用户的所有历史会话都纳入Prompt,但可以通过特定的存储机制保留关键信息,并在需要时检索以补充上下文。

存储内容:关键事实,如用户的职业、兴趣或重要事件;用户偏好,如喜欢简洁回答或偏好某种语言风格;历史决策,如用户过去的选项选择或行为模式。

案例:讯飞晓医会自动记录用户的年龄、性别、慢性病史,用户下一次打开时,只需说“我最近又咳嗽了”,它就能结合既往记录推荐就诊科室或用药建议。

3.记忆反思

定义:指Agent分析其存储的记忆,从中提取经验教训或模式,以优化未来的行为和决策,这一过程类似于人类通过回顾过去来改进当下的能力。

Agent的“反思”方式:从交互中学习,通过分析历史记录,识别重复出现的模式或错误,并调整策略;个性化响应,利用长期记忆中的用户偏好,Agent能为每个用户量身定制回答;优化决策,通过反思历史决策,Agent能在相似场景下做出更优选择;知识积累,随着时间推移,Agent构建并完善知识库,提供更准确、更有深度的回答。

通过记忆反思,Agent从静态的响应工具转变为动态的学习者,这种能力不仅提升了回答的质量和效率,还使Agent更具适应性,能够应对复杂的用户需求和变化的场景。

Plan:Agent 的“规划能力”

真正能解决任务的 Agent,一定拥有 Plan,也就是“规划”的能力。这份能力,才是它从“语言模型”迈向“任务执行器”的核心跨越。

什么是 Plan?

Plan,说白了就是让 Agent 具备拆任务、排顺序、定策略、协调执行的能力。不是“你问我答”,而是“你交代任务,我安排流程”。

这件事的难点不在“调用工具”,而在于:在合适的时机,用对的工具,干对的事。

Plan 的三大关键能力:

  1. 理解任务目标

Agent 不只是听懂语义,还要明确用户到底要解决什么。 用户说“我想去成都玩三天”,它要理解你不是“想了解成都”,而是“希望获得一份可落地的三日行程安排”。

  1. 拆分子任务

一个目标往往需要多个步骤配合完成:订机票->找酒店->安排行程(分三天)->推荐美食和交通。每一步都依赖上一步的结果。

  1. 排定执行顺序并动态调整

Agent 需要知道什么任务必须先做(如订机票定时间),什么可以后做(如安排餐馆),还要根据用户反馈随时调整计划。比如:用户突然说“我不想住民宿了”,它就要重新筛选酒店、更新交通方案,而不是“重来一次”。

现实中 Agent 是如何规划的?

当前主流的 Plan 实现方式有四种:

  1. 按提示词进行规划

靠设计 prompt引导大模型“自己”拆解任务,好处是轻量、快上手,缺点是稳定性差、难跟踪,例如让 ChatGPT 写一份面试准备清单,它靠 prompt 自动列出流程,但中途改需求就崩。

  1. 按规则进行规划

通过 if-else 或流程图硬编码规则,适合流程固定、变化少的场景,例如企业对话机器人。

  1. 用代码规划进行规划

用代码构建任务图或执行链,每一步都显式定义,逻辑可控、可追踪,例如LangChain 的 AgentExecutor、AutoGPT 的多步指令系统。

  1. LLM + Planner 模块

LLM 负责意图理解和任务拆解,Planner 模块协调任务流、调用工具、管理状态,这是当前最灵活、最强大的方案,例如Manus就是用这种方式。

以飞猪 Agent 为例:用户说:“我想从北京去成都玩 3 天。”

LLM 理解意图:出行需求 + 时间 + 地点Planner 拆解任务:查航班 → 筛酒店 → 生成行程 → 输出总结卡片Tool 调用:航旅 API、价格比价、地图服务、用户偏好筛选Memory 记忆:用户预算、是否携带老人、对餐饮的偏好Plan 全程串联:每一步都按依赖顺序执行,中间结果还能被动态更新

最后用户收到的是:已查航班->推荐酒店卡片->导出日程->推荐用户偏好的餐馆

最后

我曾经以为 AI 只是个更聪明的工具,现在慢慢发现,它已经逐渐变成了“能干活的搭子”。但也别高估现状——现在市面上大多数 Agent,不管名字起得多响,很多其实还停留在“半搭子”状态:

  • 有的会拆任务,但不会调合适的工具;
  • 有的记住了用户过多偏好,导致用户对话始终在自己的“记忆”中打圈圈;
  • 有的做完了第一步,却走错了下一步,想修改却在错误的道路越走越远。

所以,Agent 的真正价值,是它能否像一个“产品经理+研发”——不仅能准确理解用户的需求,还能将大目标拆解成可执行的小任务,并能在复杂路径中灵活调整,最终把事办成。

我心中最理想的Agent,就是**《终结者2:审判日》中的T-1000,**它不是一个被动执行命令的机器人,而是一个具备高度自主性和适应能力的终结者Agent。

规划与执行:它的核心任务是追杀约翰·康纳。它能根据环境变化(例如,约翰逃跑的方式、交通工具的选择),实时调整自己的追捕策略,而不是简单地遵循固定路径。

图:T1000通过液体形态进入直升机,去追杀康纳

工具调用:它能将自己的身体形态转变为各种工具(如刀、钩),甚至伪装成人类,这就像Agent能灵活调用不同的外部工具来完成任务。

持久记忆:它能记住目标人物的特征、声音,并利用这些记忆进行伪装和诱捕,这完美体现了Agent的长期记忆能力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值