事实上perplexity的空间功能,元宝的分组,GPT的项目功能都有类似的知识库功能,但无法实现文件库本地化。下面将介绍标题中三种方法,其中Mia还是需要将文件上传至云端,且无法添加API,优点是大厂开发,稳定性更好,免费,不用买API。
Cheer Studio 提供集成式知识库开发环境,主打深度模型集成、动态知识同步、可视化工作流配置功能。优点包括本地存储与隐私保护,深度与大模型(如硅基流动 DeepSeek)无缝连接,内置开发接口和自动化知识更新机制。缺点,更倾向专业工程师或技术团队,学习成本和环境配置难度较高。
AnythingLLM 是开源自托管大模型知识库工具,主打极度轻量化、可高度定制化的本地知识管理。优点:资源消耗低、架构松耦合、易在本地/云端快速部署。支持多种检索策略(传统BM25+语义向量匹配),适合高并发低成本场景。代码和数据全部掌控,极适合资源受限或私有化环境,数据安全性高。缺点,静态知识库场景优于动态知识库,长会话上下文管理和专业检索精度稍逊于 Cheer Studio。
一、Mia安装
下载网址:https://ima.qq.com/download,直接通过上述网址下载,安装即可,过程简单
安装完毕,先上传本地文件

对话时需要@本地知识库

注意ima的文件还是上传至云端

二、Cheer Studio安装
下载网址:https://www.cherry-ai.com/download

安照顺序安装好:

打开如下:

按照本地知识库:


实测PDF上传失败次数多,文档好一点
获取API,以deepseek为例,登录 https://www.deepseek.com/
点击右上角


创建自己的API密钥,提前复制好,后续看不了,模型充值,选合适的价位
https://api-docs.deepseek.com/zh-cn/quick_start/pricing/

将API填入cherry,按下图顺序操作,这里的硅基流动可以直接使用


对话框模型操作:


三、AnythingLLM安装
下载网址:https://anythingllm.com/desktop
找顺序安装下载即可,anythingllm安装包较大,文件库,API导入与cherry类似,不再叙述
实践结果,anythingllm:deepseek幻觉较严重,但其它的一些,如perplexity无法成功,可能是网络问题。cherry:deepseek无问题,其它的如perplexity使用时需要考虑间隔不应太短,并发不应太多,否则会被拒绝报错。如果电脑配置足够可以考虑anythingllm + ollama的本地私有化部署,当然参数越大越好。还可考虑腾讯开源的Mia平替weknora。
如何高效转型Al大模型领域?
作为一名在一线互联网行业奋斗多年的老兵,我深知持续学习和进步的重要性,尤其是在复杂且深入的Al大模型开发领域。为什么精准学习如此关键?
- 系统的技术路线图:帮助你从入门到精通,明确所需掌握的知识点。
- 高效有序的学习路径:避免无效学习,节省时间,提升效率。
- 完整的知识体系:建立系统的知识框架,为职业发展打下坚实基础。
AI大模型从业者的核心竞争力
- 持续学习能力:Al技术日新月异,保持学习是关键。
- 跨领域思维:Al大模型需要结合业务场景,具备跨领域思考能力的从业者更受欢迎。
- 解决问题的能力:AI大模型的应用需要解决实际问题,你的编程经验将大放异彩。
以前总有人问我说:老师能不能帮我预测预测将来的风口在哪里?
现在没什么可说了,一定是Al;我们国家已经提出来:算力即国力!
未来已来,大模型在未来必然走向人类的生活中,无论你是前端,后端还是数据分析,都可以在这个领域上来,我还是那句话,在大语言AI模型时代,只要你有想法,你就有结果!只要你愿意去学习,你就能卷动的过别人!
现在,你需要的只是一份清晰的转型计划和一群志同道合的伙伴。作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

660

被折叠的 条评论
为什么被折叠?



