通过这个替代模型,亦步亦趋的捕获针对每一个提示语的归因图(attribution graph)
归因图用于描述模型在特定输入提示下生成目标词元输出时所经历的推理步骤。
归因图的边表征节点间的线性影响关系,节点代表以下对象:
-
-
激活的特征
-
输入提示中的词元嵌入
-
重构误差
-
输出逻辑值
-
每个特征的活动强度由其输入边的权重之和决定。
归因图展示了特征如何在特定输入提示下相互作用以生成模型输出。
而特征在所有上下文环境中交互的全局图景更值得关注,全局交互由模型权重决定:
相邻层神经元间的直接影响就是它们之间的连接权重;若神经元间隔较远,则影响会通过中间层传递。
这本质上是Transformer视角下的范畴中采样,即在复杂高维的对象米田嵌入图中的采样路径。
学者们接着在【文献2】中应用此AI“显微镜”对自家大模型Claude 3.5 Haiku在多种情景下内部机制做了“生物学”探查,非常有趣。
笔者关注到两个情景:诗歌中的规划 和 多语言电路,很有感触和共鸣。
诗歌规划,研究发现大模型在写诗行时提前计划其输出:
在开始编写每一行之前,模型会识别可能出现在末尾的押韵单词,预先选择的押韵选项将决定模型构建整行的方式。
这颠覆了大模型仅仅做下一个词元预测的流行的行业错误认知,大模型是这么学习语料的,但不代表也是这么推理生成的。
采样过程:
“在外部感官输入下(被提示置于某种上下文),大模型内部将限定在相应的高维语言概率空间的子空间内推理;推理是在子空间中采样,类比时跨范畴采样;
采样不断进行,基于内部概率化了的世界模型(预训练获得的先验),针对感官输入(提示),做变分推断,最小化自由能,获取最佳采样分布q*,作为对导致感官输入的外部后验的预测。”
多语言电路,研究发现大模型混合使用了“特定于语言的”,和“抽象的、独立于语言的”电路,更大的模型中,“抽象的、独立于语言的”成分更突出。
对大模型中不同层次/尺度语言处理机制的描述:
人类与大模型的语言体系中具有共通的三层结构:
而推理不过是在LLM构建的高维概率语言空间里,对信息概率分布采样做变分;
这个过程可以映射到不同的上层自然语言,以及对应的语音,甚至进一步映射到某种符号语言 - 代码或数学公式;
而抽象的符号语言也可以用自然语言描述,从而进一步转换为对信息概率分布的处理过程。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。