2024版最新大模型算法入行&转行?指南来了!零基础入门到精通,收藏这篇就够了

最近私信问我关于入行、转行方面的问题比较多,就专门写一篇讲讲我的理解。

在这里插入图片描述

首先说明一下个人的背景和现状,我本人是本科学历,有互联网大厂搜推方向经验,后来跳到中厂继续做推荐,去年开始做大模型。现在是个小组长,做以应用落地为目的的大模型方向工作。

现在大模型算法涉及的工作主要分为这几个方向:
1.偏底层的训练和推理框架工作,比如colossal-ai、vlm这些,各厂如果自建集群搭建训练推理框架的话也会有一部分工作与之重合;
2.预训练;
3.Alignment;
4.应用开发;

上面也就十分粗略的简单做了个划分,其实很多界限并不清晰,只是为了后面叙述有个结构。

底层框架

这一层我是没太接触过的,不过公司内有做这方面的人。以我粗浅的认知,这些人的技术栈和以前搞GPU算子优化、分布式框架的那拨人重合度比较高。不太懂就不多说了。

预训练

在我看来,预训练这块的工作最终肯定是赢家通吃的。现在只是因为大家都还在同一个水平线上,也没有能和开源拉开差距,卖api也卖不了多少,所以看起来竞争还挺激烈。等到决出三六九等之后肯定没有必要存在那么多团队做pretrain。况且即使做pretrain的团队,真正核心在干活的也没几个人。一千张卡可能不够供一个人用,卡就那么多,配用的人也就那么多。剩下的人做的事情我觉得都不是那么有意义,不是说洗数据啥的不重要,重要,但对大多数人来说对个人价值提升不大。我之前也自己做基于llama的继续pretrain,现在这块工作已经完全放弃了,感觉没啥意义。

再有,所谓垂直领域大模型这个事情我觉得大概率是个伪命题,各方面知识应该是相互促进补充的,遵循奥卡姆剃刀原理我相信最终就是一个模型破一切。

所以我认为虽然现在预训练目前在就业市场上可能还是有比较大的需求量的,但是很多就是纯跟风,迟早得死。对于择业的建议就是:自信自己顶级天赋顶级卷度,势要干翻gpt4的人选这个。

Alignment

我其实觉得sft和强化学习都可以放一起,不知道我这个小标题准不准确。反正都是在基座上进一步提升对话的效果。这块工作其实就开始一定程度接近业务了,比如目前,很多业务团队都会根据下游任务来构造数据进行sft训练。会不会以后基座足够强之后全靠few shot啥的就完全解决问题,这个我不敢猜测。至少在国内,基于开源模型做sft拿到业务上用,应该是挺长一段时间会保持的状态,所以这个方向看起来我觉得是目前市场上需求较大,未来一段时间也还是会持续有比较大需求量的。想训模型的可以选这个方向我觉得挺好

应用开发

这一块的岗位其实现在大家看到的还不多,主要可能有两个原因吧,第一是openai的接口在国内直接用是有监管问题的。第二是国内开源模型的水平还不行,以及一些相关链路上的工作还没做完(比如functioncalling)。所以时机还不成熟,还不到LLM native应用大规模爆发的时候。

但是我觉得毫无疑问这个方向的人才需求以后将远远超出前面几个方向加起来,这就像是你搞安卓系统和安卓应用开发的对比一样。做操作系统开发才几个人,安卓开发那真是不知道有多少了。

我预计这个时间也不会太长,一两年肯定够了,所以现在找这个方向的机会开始布局也是很不错的。不过先训训模型等真的有机会起来也没问题,毕竟你做应用开发对系统原理了解清楚肯定是优势,

其他

其实除了上面说这些,还存在一些其他的方向,比如类似guidance这样在align模型之后的,和推理框架绑定比较强的组件,我觉得以后应该会融入到推理框架的范围内。

总结

最后简单总结一下,我认为现在总体的行业形势是资本进行了大规模投入,但是基本堆在预训练上,然后这个环节也容纳不了太多人就业,而且暂时也创造不了多少商业价值。所以很有可能一段时间后会有一个下行的阶段,现在做预训练这些创业公司死一批。然后随着应用端的工作越来越多,大家慢慢把投入方向往下移,往应用端发力,这时候会有一些找准机会和方向的公司出来。顺利的话各种LLM native应用就走入千家万户。(就纯粹我自己的想象哈哈哈)

总的来说我认为LLM肯定是一个好的方向,现在进来不管做什么,也算是比较早的了解原理的人,后面做应用应该也会有一些优势。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

无论你是刚入行的产品新手,还是经验丰富的资深产品经理,在AI时代下都需要不断拓展自己的技能边界,才能在未来的竞争中立于不败之地。

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

2.大模型的优势

大模型最大的优势在于其强大的功能和广泛的应用。有时候,研究人员或开发者的需求不仅仅是快速的运行速度,而是能够处理复杂问题的能力。对于很多挑战性的任务,使用大模型能够大大减轻程序设计的负担,从而显著提高项目的质量。其易用性和灵活性也能让新手迅速上手。

虽然大模型在底层运算上可能不如一些特定的算法快速,但大模型清晰的结构和强大的能力能够解放开发者的大量时间,同时也能方便地与其他技术(如传统机器学习算法)结合使用。

因此,从来没有一种技术能够像大模型这样同时深入到这么多领域并且大模型支持跨平台操作,也支持开源,拥有丰富的预训练模型。尤其随着人工智能的持续火热,大模型 在学术界和工业界的关注度持续攀升,越来越多的技术爱好者、行业关注者也都开始学习和应用大模型。

3、大模型学习建议

在学习大模型的过程中,不要因为自己的基础薄弱或者之前没有接触过相关领域就想要放弃。记住,很多人在起跑线前就选择退出,但只要你沉下心来,愿意付出努力,就一定能够掌握。在学习的过程中,一定要亲自动手去实践,因为只有通过编写代码、实际操作,你才能够逐渐积累经验。

同时,遇到错误和挑战也是不可避免的,甚至可以说是学习的一部分。当你遇到错误时,学会利用各种资源去解决,比如搜索引擎、开源论坛、社区和学习群组,这些都是你提升学习能力的好帮手。如果实在找不到错误的解决办法,可以来公众号或者相关学习平台上寻求帮助。

接下来,我为你提供一份大模型学习路径的参考,包括:基础知识了解、理论学习、实践操作、专项深入、项目应用、拓展研究等步骤。你可以根据这个路径,结合自己的实际情况,制定合适的学习计划。
img
这里,我分享一些学习大模型的历程和技巧。我最初接触大模型是因为工作需要,那时大模型还没有像现在这样普及,资料也相对较少。但通过坚持学习,我也逐渐掌握了大模型的应用。以下是一些建议:

  • 先从了解大模型的基础知识开始,可以通过阅读相关书籍、学术论文或者参加在线课程。
    学习过程中不要只看理论知识,一定要动手实践。可以尝试使用一些开源的大模型框架,如TensorFlow、PyTorch等,进行实际操作。
  • 在掌握基础理论后,可以尝试参与一些实际项目,比如数据分析、自然语言处理、图像识别等,将理论应用到实践中。遇到问题时不要害怕,要学会利用网络资源、开源社区和专业论坛寻求帮助。
  • 不断深化学习,可以参加一些专业培训课程,或者深入研究最新的学术论文,保持对大模型领域的最新动态的了解。

学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:

If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?

关于大模型技术储备

学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。

AI大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起

1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程

第2章 大语言模型基础

2.1 Transformer 模型

  • 嵌入表示层
  • 注意力层
  • 前馈层
  • 残差连接与层归一化
  • 编码器和解码器结构

2.2 生成式预训练语言模型 GPT

  • 无监督预训练
  • 有监督下游任务微调
  • 基于 HuggingFace 的预训练语言模型实践

2.3 大语言模型结构

  • LLaMA 的模型结构
  • 注意力机制优化

    因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

第3章 大语言模型基础

3.1 数据来源

  • 通用数据
  • 专业数据

3.2 数据处理

  • 低质过滤
  • 冗余去除
  • 隐私消除
  • 词元切分

3.3 数据影响分析

  • 数据规模影响
  • 数据质量影响
  • 数据多样性影响

3.4 开源数据集合

  • Pile
  • ROOTS
  • RefinedWeb
  • SlimPajama


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

第4章 分布式训练

4.1 分布式训练概述
4.2 分布式训练并行策略

  • 数据并行
  • 模型并行
  • 混合并行
  • 计算设备内存优化

4.3 分布式训练的集群架构

  • 高性能计算集群硬件组成
  • 参数服务器架构
  • 去中心化架构

4.4 DeepSpeed 实践

  • 基础概念
  • LLaMA 分布式训练实践


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

第5章 有监督微调

5.1 提示学习和语境学习

  • 提示学习
  • 语境学习

5.2 高效模型微调

  • LoRA
  • LoRA 的变体

5.3 模型上下文窗口扩展

  • 具有外推能力的位置编码
  • 插值法

5.4 指令数据构建

  • 手动构建指令
  • 自动生成指令
  • 开源指令数据集

5.5 Deepspeed-Chat SFT 实践

  • 代码结构
  • 数据预处理
  • 自定义模型
  • 模型训练
  • 模型推
第6章 强化学习

6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践

第7章 大语言模型应用

7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化

第8章 大语言模型评估

8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

总结

坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。

记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。

最后,不要忘记与同行交流和学习。AI大模型领域有许多优秀的专家和社区,他们可以为你提供宝贵的指导和建议。参加技术交流会、阅读论文、加入专业论坛,这些都是提升自己技术水平的好方法。

祝愿你在AI大模型的学习之旅中取得丰硕的成果,开启属于你的AI大模型时代!

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值