一篇文章系统看懂大模型2024年最新版,30000字呕心沥血,只为让你完全读懂大模型的原理

写在前面的话

1.为什么要写这篇文章?

过去一年多,说实话现在关于大模型的介绍和说明的文章已经非常多了,大部分人其实也已经有了一些基础的认知,但是我自己的感受是,这些信息实在是太碎片化了,称不上系统化的认知,并且市面上暂时也没有看到能够一口气全面的讲清楚大模型到底是什么这样的文章;

为了缓解自己的认知焦虑,我想亲自做一下信息的汇总者,把过去一年理解到的关于大模型的知识点,整理成一篇文章,希望通过一篇文章理解清楚大模型,也算是对自己大量学习那么多内容的一个交代;

2.我将分享哪些内容?

本篇文章将分享15个关于大模型相关的话题,本来有20个,我删减了一些可能更加偏技术的内容,修改为更加聚焦在普通人或者产品经理应该关注的问题点,目标是希望作为AI小白用户,我们只需要掌握和理解这些内容就够了;

3.适合什么人群?

本篇文章比较适合以下几类朋友:

  1. 适合想要了解大模型到底是怎么回事的小白和入门朋友;

  2. 适合有意愿转型从事AI相关的产品和岗位的朋友,包括产品经理,运营人员;

  3. 适合已经初步了解AI,但是想要进阶学习AI,减少AI认知焦虑的朋友;

内容声明:整篇内容均为个人在广泛的阅读和消化大量的专家文章、大模型相关的书籍以及和行业内的专家们请教和学习之后汇总的结果,个人更多的是作为一个知识消化和整合者的作用,如果有描述不正确的,欢迎友善的告知我!

前排提示,文末有大模型AGI-优快云独家资料包哦!

第1讲:大模型常见的概念理解

在开始了解大模型之前,我们先理解一些基础概念,掌握这些专业名词的概念,以及概念之间的关系,会有利于你后续阅读和学习任何AI和大模型相关的内容,个人花费了挺多时间去梳理他们之间的关系,所以这部分一定要好好阅读;

1.常见的AI术语

  1. 大模型(LLM):现有所有的大模型,指的都是大语言模型,并且指的都是生成式的大模型,可以联想到的实际案例包括GPT4.0,GPT4o等;

  2. **深度学习:**深度学习是机器学习的一个子领域,专注于应用多层神经挽留过进行学习,深度学习擅长处理复杂的数据如图像、音频、文本,因此在AI中的应用非常有效;

  3. 监督学习:监督学习是机器学习的一种方法,通过训练数据集来学习从输入到输出的映射关系。训练数据集包含输入-输出对,模型使用这些已标记的数据进行训练,学习如何从输入预测输出。常见的监督学习算法包括线性回归、逻辑回归、支持向量机、K近邻、决策树和随机森林等。

  4. 无监督学习:无监督学习是机器学习的一种方法,**在没有标签数据的情况下从数据中发现模式和结构,**它主要用于数据聚类和降维等任务。常见的无监督学习算法包括K均值聚类、层次聚类、DBSCAN、主成分分析(PCA)和t-SNE等。

  5. 半监督学习:半监督学习结合少量标记数据和大量未标记数据进行训练。它利用未标记数据的丰富信息和少量标记数据的准确性来提高模型性能。常见的方法包括生成对抗网络(GANs)和自编码器。

  6. 强化学习:强化学习是一种通过与环境交互,并基于奖励和惩罚机制来学习最优策略的方法。强化学习算法通过试错法来优化决策过程,以实现最大化累积奖励。常见算法包括Q学习、策略梯度和深度Q网络(DQN)等。

  7. **模型架构:**模型的架构代表了大模型的主干采用了什么样的设计方式,不同的模型架构会影响大模型的性能、效率、甚至是计算成本,也决定了模型的可拓展性;例如很多大模型的厂商会通过调整模型的架构的方式来缩减模型的计算量,从而减少对计算资源的消耗;

  8. Transformer架构:Transformer是目前主流的大模型采用的模型架构,包括GPT4.0以及国内大部分的大模型,都是采用这个架构,Transformer架构之所以被广泛的使用,主要的原因是这个架构类型让大模型具备了理解人类自然语言、上下文记忆、生成文本的能力;常见的模型架构,除了Transformer架构,还有卷积神经网络(CNN)架构,适用于图像处理,以及生成对抗网络(GAN),适用于图像生成领域;详细关于Transformer架构的介绍可后面部分内容;

  9. **MOE架构:**MOE架构表示混合专家网络架构,表示混合多种专家模型,形成一个参数量巨大的模型,从而能支持解决多种复杂的专业问题;MOE架构的模型里面可能包含Transformer架构的模型;

  10. **机器学习技术:**表示实现AI的一大类技术,包括大家经常听到的深度学习、监督学习、强化学习,这些都属于机器学习的一种技术,具体是啥作为产品经理而言不需要过分深究,只需要知道这些xx学习之间的关系就好,别被技术人员们带沟里去了;

  11. **NLP技术(自然语言处理):**NLP是AI的一个应用领域,专注于计算机理解、解释、生成人力语言,用于文本分析、机器翻译、语音识别和对话系统等应用场景,简单一点讲,就是把很多信息转换成人类自然语言能够理解的信息的一种技术;

  12. CV计算机视觉技术:如果说NLP处理的是文本,那么CV相当于是解决视觉内容相关的技术,CV技术包括常见的图像识别技术、视频分析技术、图像分割技术等,都属于CV技术,CV技术也是大模型应用中常见的技术,特别是后面会讲到的多模态大模型技术;

  13. 语音识别和合成技术:包括语音转换为文本技术,以及语音合成技术,例如文本合成语音技术(简称TTS技术);

  14. **检索增强生成技术(RAG):**表示大模型基于搜索引擎和知识库检索的内容生成内容的技术,RAG是大部分AI应用落地的时候都会涉及的技术;

  15. 知识图谱 (Knowledge Graph):知识图谱是一种把知识关联起来的技术,通过知识图谱技术,可以让知识之间建立联系,帮助模型更好、更快的获取到最相关的知识,从而提升模型处理复杂关联信息,以及AI推理能力;

  16. Function Call :是指在大型语言模型(如GPT等)中,通过调用模型内置的或外部的函数,使其能够完成特定的任务或执行特定的操作。这一机制让模型不仅仅是一个生成文本的工具,而能够通过指定调用不同的功能,执行更多样化、具体的操作。Function Call 让大模型能够和多种API能力结合,从而让大模型的应用更好的落地,比如大模型要支持内容检索、文档识别等能力,就需要基于Function Call 的能力来实现;

  17. 大模型训练与优化技术相关术语

  18. 预训练 Pre-training:表示在大量数据集上训练模型的过程,预训练的数据集通常比较大,种类也比较多,训练后获得的是一个通用能力比较强的大模型,就好像一个人通过义务教育和上大学学习了多种通用知识,具备解决通用问题的哪里

  19. 模型微调 Fine-tuning:模型微调表示大模型在特定任务或小数据集上进一步训练模型以提高模型解决针对性问题的表现,与预训练阶段不同的是微调阶段使用的数据量相比更小,且主要使用垂直领域的数据,通过微调获得的是一个垂直模型和行业模型,模型微调,就好像入职支持的毕业生,开始接受企业的专业技能的培训;

  20. 提示词工程Prompt Engineering:用产品经理的语言理解,就是使用大模型更容易理解的提问方式,让大模型更好的输入用户想要的结果,所以提示词工程就是一门学会提问题的技巧;

  21. **模型蒸馏:**模型蒸馏是一种通过将大模型(称为教师模型)的知识传递给一个小模型(称为学生模型)的技术。学生模型通过学习教师模型输出的知识来提高其性能,保持与大模型相近的精度。

  22. **模型剪枝:**模型剪枝表示去除大模型不需要的参数,把整体的参数规模降低下来,从而降低模型的计算量和成本消耗;

  23. AI应用相关术语

  24. **智能体Agent:**Agent简单理解就是具备某一项能力的AI应用,如果互联网时代的应用叫APP,AI时代的应用叫Agent;

  25. **Chatbot:**Chatbot表示AI聊天机器人,表示一类以聊天的方式为应用交互的AI应用,包括像ChatGPT这类的产品,都属于Chatbot类应用;

  26. 大模型表现相关的术语

  27. **涌现:**指的是当大模型的参数规模达到一定的规模之后,大模型能够展现出更多超出预期的能力;

  28. **幻觉:**表示大模型在生成内容的过程中出现了胡说八道的情况,错误的把一些不正确的事实当做真实的情况处理,从而导致生成结果不真实的现象;

  29. 失忆:表示当对话轮次和长度达到一定限度之后,模型突然变傻,开始出现重复和失忆的情况,大模型的记忆主要受模型的上下文长度等影响;


2.如何理解AI、机器学习、深度学习、NLP等概念关系

如果你关注AI和大模型,**“AI”“机器学习”“深度学习”“NLP”**等这几个关键词基本在未来的学习中一定会遇到,所以我们最好先理解清楚这几个专业名词的概念和定义,以及他们之间的逻辑关系,方便你更加容易理解它们;

概括起来讲,这几个概念之间的关系如下:

1.机器学习是AI的一种核心技术,AI的核心技术除了机器学习,还有专家系统、贝叶斯网络等(不需要过多深究这些是什么),其中深度学习是机器学习中的一种;

2.而NLP是AI的应用任务类型中的一种技术,用于自然语言的处理,除了NLP,AI的应用技术还包括CV计算机视觉技术、语音识别和合成技术等;

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.如何理解Transformer架构?

谈到大模型,就不能不提Transformer架构,如果说大模型是一棵树,Transformer架构就像是模型的主干,ChatGPT这类产品的出现,主要还是得益于Transformer架构的设计,让模型具备理解上下文、记忆能力、预测生词等能力;同时,Transformer的出现,也让大模型不需要像以前一样需要依赖大量的有标注数据做训练,而是能够基于无标注数据做训练,这个突破的意义在于,以前做一个模型需要投入大量的人力去对数据做清理、标注分类,但是现在只需要将碎片化、零散的数据扔给模型,模型也能够处理,我们通过如下几点具体了解这些概念:

Transformer架构和深度学习技术的概念关系
Transformer架构属于深度学习技术领域的一种神经网络架构,也就是说属于深度学习技术里面的一种实现和设计形式,深度学习领域,除了Transformer架构,还有传统的递归神经网络(RNN)和长短期记忆网络(LSTM)架构;

4.如何理解Transformer架构和GPT之间的关系

GPT的的英文全称是,生成式预训练 Transformer(Generative Pre-trained Transformer,GPT),因此GPT就是基于Transformer架构的而开发出来的一种大语言模型,由OpenAI开发。

GPT的核心思想是通过大规模预训练和微调,来增加生成和理解自然语言的能力,可以理解为,Transformer架构出来之后,相当于解决了理解上下文、处理大量数据、预测文本的能力,但是openai首次采用预训练+微调这种形式来改进和使用Transformer架构,使它具备了chatgpt这类产品的理解自然语言和生成自然语言的能力;

GPT之所以能具备生成和理解自然语言的能力,是因为预训练阶段通过大规模未标注文本语料库学习广泛的语言模式和知识,且预训练任务通常是语言模型任务,即给定一个序列的前部分,预测下一个词,这种方式使模型能够理解语言的结构和上下文关系,具体的差异点如下:

  1. **能力差异上:**Transformer架构是让模型具备理解上下文、处理大量数据、预测文本的能力,但是还不具备理解自然语言、生成自然语言的能力;而GPT在增加了自然语言的预训练之后,具备了理解和生成自然语言的能力;

  2. 架构基础上:

  3. **Transformer:**原始的Transformer模型由一个编码器和一个解码器组成,编码器处理输入序列,生成中间表示,然后解码器基于这些表示生成输出序列。这个架构特别适用于序列到序列任务,如机器翻译。并且编码器在处理输入序列时采用的是双向处理的机制,可以使用双向注意力,即每个词可以考虑序列中所有其他词的信息,不论它们是前面的词还是后面的词。

  4. **GPT:**GPT主要使用Transformer的解码器部分,只关注生成任务。它在训练和生成过程中是单向的,即每个词只能看到它前面的词(单向注意力)。这种架构更适合文本生成任务。编码器采用的是单向处理的机制,在生成下一个词时,GPT只能考虑之前的词,这与语言模型的自然形式一致。

  5. 解决特定问题的实现方式上:

  6. Transformer用于解决特定任务类型(比如机器翻译等)的问题的时候,它的实现方式是通过训练的方式来实现的,并且Transformer的编码器和解码器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值