Machine Learning-算法汇总介绍

之前一个一个讲还是有些零散而且更新的速度也慢,所以我还是打算先整理一波全部的算法,再逐一展开介绍比较好,原文来自Jason Brownlee 的文章《A Tour of Machine Learning Algorithms》。


那么算法很多,如何做好分组有助于我们更好记住它们,作者给出了2条算法分组的方式:

  • The first is a grouping of algorithms by the learning style.(通过算法的学习方式)

  • The second is a grouping of algorithms by similarity in form or function (like grouping similar animals together).(通过算法的功能)

下面就会从这2个角度来阐述一下机器学习的算法。

640?wx_fmt=png


Algorithms Grouped by Learning Style


关于机器学习算法,有三种不同的学习方式:

1. Supervised Learning(监督学习)

当输入的数据集(我们称之为训练集)的数据有标签,如好坏标签,分类标签等,那么通过这些数据来建立的预测或者分类模型,属于监督学习模型。

经典问题:classification and regression.(分类与回归)

经典算法:Logistic Regression and the Back Propagation Neural Network.(逻辑回归算法与BP神经网络算法)

640?wx_fmt=png


2. Unsupervised Learning(无监督学习)

与监督学习相反,训练集中的数据并没有标签,这意味着你需要从这堆没有标签的数据中去提炼它们的特点规则等等,可能是通过数学推理过程来系统地减少冗余,又或者是通过数据相似度来组织数据。

经典问题:clustering, dimensionality reduction and association rule learning.(聚类、降维、规则学习)

经典算法:the Apriori algorithm and k-Means.(这个专用名词就不翻译了)

640?wx_fmt=png


3. Semi-Supervised Learning(半监督学习)

顾名思义,半监督学习意味着训练数据有一部分有标签,而一些没有,一般而言,当训练数据量过少时,监督学习得到的模型效果不能满足需求,因此用半监督学习来增强效果。

经典问题:classification and regression.

经典算法:半监督SVM,高斯模型,KNN模型

Machine Learning Algorithms by Giuseppe Bonaccorso English | 24 July 2017 | ISBN: 1785889621 | ASIN: B072QBG11J | 360 Pages | AZW3 | 12.18 MB Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值