How many integers can you find
Time Limit : 12000/5000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 96 Accepted Submission(s) : 31
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10},
all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
Author
Source
2008 “Insigma International Cup” Zhejiang Collegiate Programming Contest - Warm Up(4)
容斥原理:


奇数为+,偶数为-
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
#define ll long long
#define ms(a,b) memset(a,b,sizeof(a))
const int M=1e5+10;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
int i,j,k,n,m;
int cnt;
long long a[M];
int ans;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
void dfs(int cur,ll lcm,int id)
{
lcm=a[cur]/gcd(a[cur],lcm)*lcm;
if(id&1)
ans+=(n-1)/lcm;
else ans-=(n-1)/lcm;
for(int i=cur+1;i<cnt;i++)
dfs(i,lcm,id+1);
}
int main()
{
while(~scanf("%d%d",&n,&m)){
cnt=0;
for(int i=0;i<m;i++){
int x;
scanf("%d",&x);
if(x!=0)a[cnt++]=x;
}
ans=0;
for(int i=0;i<cnt;i++){
dfs(i,a[i],1);
}
printf("%d\n",ans);
}
return 0;
}