HDU1331 Function Run Fun

Function Run Fun

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3754    Accepted Submission(s): 1836


Problem Description
We all love recursion! Don't we?

Consider a three-parameter recursive function w(a, b, c):

if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1

if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)

if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)

otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)

This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
 

Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
 

Output
Print the value for w(a,b,c) for each triple.
 

Sample Input
  
  
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
 

Sample Output
  
  
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
#include<iostream>
#include<stdio.h>
#include<cmath>
#include<string>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;

int re[25][25][25];     //a,b,c∈(0,20)
int i,j,k;
int a,b,c;

int f(int a,int b,int c)
{
    if(a<=0||b<=0||c<=0) return 1;
    if(a>20||b>20||c>20) return f(20,20,20);
    if(re[a][b][c])return re[a][b][c];        //此if一定要在第三个位置,因为数组开的范围<25
    if(a<b&&b<c) re[a][b][c]=f(a, b, c-1) + f(a, b-1, c-1) - f(a, b-1, c);
    else re[a][b][c]=f(a-1, b, c) + f(a-1, b-1, c) + f(a-1, b, c-1) - f(a-1, b-1, c-1);
    return re[a][b][c];

}

int main()
{
    memset(re,0,sizeof(re));
    while(cin>>a>>b>>c)
    {
        if(a==-1&&b==-1&&c==-1)break;
       printf("w(%d, %d, %d) = %d\n",a,b,c,f(a,b,c));
    }
    return 0;
}


 


内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值