PAT (Advanced Level) Practice 1119 Pre- and Post-order Traversals(30 分)

博客围绕根据给定的二叉树前序和后序遍历序列求中序遍历展开。指出仅知前后序时树可能不唯一,介绍了判断唯一性的思路,即子树只剩两个节点时不唯一,还需输出中序遍历,不唯一时输出任意一种情况。

1119 Pre- and Post-order Traversals(30 分)

Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences, or preorder and inorder traversal sequences. However, if only the postorder and preorder traversal sequences are given, the corresponding tree may no longer be unique.

Now given a pair of postorder and preorder traversal sequences, you are supposed to output the corresponding inorder traversal sequence of the tree. If the tree is not unique, simply output any one of them.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤ 30), the total number of nodes in the binary tree. The second line gives the preorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first printf in a line Yes if the tree is unique, or No if not. Then print in the next line the inorder traversal sequence of the corresponding binary tree. If the solution is not unique, any answer would do. It is guaranteed that at least one solution exists. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input 1:

7
1 2 3 4 6 7 5
2 6 7 4 5 3 1

Sample Output 1:

Yes
2 1 6 4 7 3 5

Sample Input 2:

4
1 2 3 4
2 4 3 1

Sample Output 2:

No
2 1 3 4

题意:给你前序遍历和后序遍历,它的中序遍历是否唯一。输出中序遍历(不唯一则输出任意一种情况)

思路:主要判断当前序和后序遍历某个子树只剩两个节点(根结点和一个孩子结点)时,这个孩子节点可以是左儿子,也可以说右儿子。这时不唯一。

代码: 

#include <bits/stdc++.h>
using namespace std;
const int maxn=31;
int pre[maxn],post[maxn],flag=0,space;
struct node{
    int v,left,right;
}a[maxn];
//左右不分 默认放左
int in(int pr_l,int pr_r,int pos_l,int pos_r)
{
    if(pr_l>pr_r)return 0;
    if(pr_l==pr_r)return pre[pr_l];

    if(pr_l+1==pr_r)
    {
        if(pre[pr_l]==post[pos_r]&&pre[pr_r]==post[pos_l])flag=0;
    }
    int root=pre[pr_l]; //先序遍历 第一个是根结点
    int l=pre[pr_l+1];
    int pos_root=pos_l;
    //找左子树的根结点位置
    while(post[pos_root]!=l)pos_root++;
    int cnt=pos_root-pos_l;//与左边界 间隔个数
   
    a[root].left=in(pr_l+1,pr_l+1+cnt,pos_l,pos_root);
    a[root].right=in(pr_l+cnt+2,pr_r,pos_root+1,pos_r-1);
    return root;
}
void intra(int x)
{

    if(a[x].left)intra(a[x].left);
    if(space)printf(" ");
    printf("%d",x);space++;
    if(a[x].right)intra(a[x].right);

}
int main()
{
    int n;scanf("%d",&n);
    for(int i=0;i<n;i++)scanf("%d",&pre[i]);
    for(int i=0;i<n;i++)scanf("%d",&post[i]);
    flag=1;
    in(0,n-1,0,n-1);

    if(flag)printf("Yes\n");
    else printf("No\n");
    space=0;
    intra(pre[0]);

    printf("\n");
}

 

内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过析当前企业面临的资源散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行二次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验享】板块享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方二维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征集合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 集成多种主流机器学习算法: * Lass...
【顶级EI完整复现】【DRCC】考虑N-1准则的布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术文档,重点围绕电力系统中低碳经济调度问题展开,结合布鲁棒优化(Distributionally Robust Optimization, DRO)与机会约束规划(Chance-Constrained Programming, CCP),引入N-1安全准则以提升系统在元件故障情况下的可靠性。该方法在不确定性环境下(如风电出力波动)保障调度方案的可行性与经济性,同时降低碳排放。文档提供了完整的Matlab代码实现,便于科研人员复现实验结果,适用于高水平学术研究与工程应用验证。; 适合人群:具备电力系统优化、运筹学及不确定性建模背景的研究生、科研人员及电力行业工程师,熟悉Matlab编程与优化工具箱(如YALMIP、CPLEX/Gurobi)者更佳;适合从事智能电网、低碳调度、鲁棒优化方向的研究者; 使用场景及目标:①复现顶级EI期刊论文中的布鲁棒机会约束模型;②研究N-1安全准则在低碳经济调度中的集成方法;③掌握布鲁棒优化在电力系统不确定性处理中的建模技巧;④为微电网、综合能源系统等场景下的可靠、低碳调度提供算法支撑; 阅读建议:建议结合文档中提供的网盘资源(含YALMIP-develop等工具包)进行代码调试与实验验证,重点关注不确定性建模、机会约束转化、鲁棒优化求解流程,并可进一步扩展至多能源协同、需求响应等复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值