因为前n位数字的组合方案数与后n位数字的组合方案数相同
所以只用求出前n位数字的组合方案数再平方即可
可以把问题看成
共n个背包 有0 1 2 3 4 5 6 7 8 9共10种物品 需要拿够s/2的价值
求有多少种拿法
由于答案会有很多 所以需要用高精度
#include<bits/stdc++.h>
using namespace std;
#define maxn 9999
#define maxsize 1010
#define dlen 4
class bignum {
private:
int a[500];
int len;
public:
bignum() { len = 1; memset(a, 0, sizeof a); }
bignum(const int);
bignum(const char*);
bignum(const bignum&);
bignum& operator = (const bignum&);
bignum operator + (const bignum&) const;
bignum operator - (const bignum&) const;
bignum operator * (const bignum&) const;
bignum operator / (const int&) const;
bignum operator ^ (const int&) const; // n cifang
int operator % (const int&) const;//dui int mod
bool operator > (const bignum& t) const;// bignum < bignum
bool operator > (const int& t) const;// bignum < int
void print();
};
bignum::bignum(const int b) { //gouzao int
int c, d = b;
len = 0;
memset(a, 0, sizeof a);
while (d > maxn) {
c = d - (d / (maxn + 1)) * (maxn + 1);
d = d / (maxn + 1);
a[len++] = c;
}
a[len++] = d;
}
bignum::bignum(const char* s) {//gouzao string
int t, k, index, l, i;
memset(a, 0, sizeof a);
l = strlen(s);
len = l / dlen;
if (l % dlen) len++;
index = 0;
for (i = l - 1; i >= 0; i -= dlen) {
t = 0;
k = i - dlen + 1;
if (k < 0) k = 0;
for (int j = k; j <= i; j++) {
t = t * 10 + s[j] - '0';
}
a[index++] = t;
}
}
bignum::bignum(const bignum& t) : len(t.len) {// copy bignum
int i;
memset(a, 0, sizeof a);
for (i = 0; i < len; i++) a[i] = t.a[i];
}
bignum& bignum::operator=(const bignum& n) {// a = 10(bignum) fuzhi between bignum
int i;
len = n.len;
memset(a, 0, sizeof a);
for (i = 0; i < len; i++) a[i] = n.a[i];
return *this;
}
bignum bignum::operator+(const bignum& T) const {
bignum t(*this);
int i, big;
big = T.len > len ? T.len : len;
for (i = 0; i < big; i++) {
t.a[i] += T.a[i];
if (t.a[i] > maxn) {
t.a[i + 1]++;
t.a[i] -= maxn + 1;
}
}
if (t.a[big] != 0) t.len = big + 1;
else t.len = big;
return t;
}
bignum bignum::operator-(const bignum& T) const {
int i, j, big;
bool flag;
bignum t1, t2;
if (*this > T) {
t1 = *this;
t2 = T;
flag = 0;
}
else {
t1 = T;
t2 = *this;
flag = 1;
}
big = t1.len;
for (i = 0; i < big; i++) {
if (t1.a[i] < t2.a[i]) {
j = i + 1;
while (t1.a[j] == 0) j++;
t1.a[j--]--;
while (j > i) t1.a[j--] += maxn;
t1.a[i] += maxn + 1 - t2.a[i];
}
else t1.a[i] -= t2.a[i];
}
t1.len = big;
while (t1.a[t1.len - 1] == 0 && t1.len > 1) {
t1.len--;
big--;
}
if (flag) t1.a[big - 1] = 0 - t1.a[big - 1];
return t1;
}
bignum bignum::operator*(const bignum& T) const {
bignum ret;
int i, j, up;
int temp, temp1;
for (i = 0; i < len; i++) {
up = 0;
for (j = 0; j < T.len; j++) {
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if (temp > maxn) {
temp1 = temp - temp / (maxn + 1) * (maxn + 1);
up = temp / (maxn + 1);
ret.a[i + j] = temp1;
}
else {
up = 0;
ret.a[i + j] = temp;
}
}
if (up != 0)
ret.a[i + j] = up;
}
ret.len = i + j;
while (ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
return ret;
}
bignum bignum::operator/(const int& b) const {
bignum ret;
int i, down = 0;
for (i = len - 1; i >= 0; i--) {
ret.a[i] = (a[i] + down * (maxn + 1)) / b;
down = a[i] + down * (maxn + 1) - ret.a[i] * b;
}
ret.len = len;
while (ret.a[ret.len - 1] == 0 && ret.len > 1)
ret.len--;
return ret;
}
int bignum::operator %(const int& b) const {
int i, d = 0;
for (i = len - 1; i >= 0; i--) d = ((d * (maxn + 1)) % b + a[i]) % b;
return d;
}
bignum bignum::operator^(const int& n) const {
bignum t, ret(1);
int i;
if (n < 0) exit(-1);
if (n == 0) return 1;
if (n == 1) return *this;
int m = n;
while (m > 1) {
t = *this;
for (i = 1; (i << 1) <= m; i <<= 1) t = t * t;
m -= i;
ret = ret * t;
if (m == 1) ret = ret * (*this);
}
return ret;
}
bool bignum::operator>(const bignum& T) const {
int ln;
if (len > T.len) return true;
else if (len == T.len) {
ln = len - 1;
while (a[ln] == T.a[ln] && ln >= 0) ln--;
if (ln >= 0 && a[ln] > T.a[ln]) return true;
else return false;
}
else return false;
}bool bignum::operator>(const int& t) const {
bignum b(t);
return *this > b;
}
void bignum::print() {
int i;
printf("%d", a[len - 1]);
for (i = len - 2; i >= 0; i--) {
printf("%04d", a[i]);
}
printf("\n");
}
int n, s;
bignum f[51][505];
int main() {
cin >> n >> s;
if (s % 2 != 0)
cout << 0 << endl;//如果s为奇数则无法满足要求 输出0即可
else
{
f[0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 0; j <= s / 2; j++)
for (int k = 0; k <= 9; k++)
{
if(j>=k)
f[i][j] = f[i][j] + f[i - 1][j - k];
}
bignum ans = f[n][s / 2] * f[n][s / 2];
ans.print();
}
return 0;
}