表达式解析和表达式求导面向对象

本文介绍了一种基于表达式的解析和求导方法,通过构建表达式树来实现对复杂数学表达式的解析,并生成求导树进行求导运算。文章详细描述了文法分析过程,包括数字、幂函数、三角函数等元素的解析,以及加法和乘法节点的逻辑实现。

表达式解析和表达式求导

Differential Homework

形式化描述

对表达式做求导

设定的形式化表述

  • 表达式 →\rightarrow 空白项 [加减 空白项] 项 空白项 | 表达式 加减 空白项 项 空白项
  • →\rightarrow [加减 空白项] 因子 | 项 空白项 * 空白项 因子
  • 因子 →\rightarrow 变量因子 | 常数因子
  • 变量因子 →\rightarrow 幂函数 | 三角函数
  • 常数因子 →\rightarrow 带符号的整数
  • 幂函数 →\rightarrow x [空白项 指数]
  • 三角函数 →\rightarrow sin 空白项 ‘(’ 空白项 x 空白项 ‘)’ [空白项 指数] | cos 空白项 ‘(’ 空白项 x 空白项 ‘)’ [空白项 指数]
  • 指数 →\rightarrow ** 空白项 带符号的整数
  • 带符号的整数 →\rightarrow [加减] 允许前导零的整数
  • 允许前导零的整数 →\rightarrow (0|1|2|…|9){0|1|2|…|9}
  • 空白字符 →\rightarrow (空格) | \t
  • 空白项 →\rightarrow {空白字符}
  • 加减 →\rightarrow + | -

其中{}表示0个、1个或多个,[]表示0个或1个,|表示多个之中选择。

式子的具体含义参照其数学含义。

核心思路

  1. 解析表达式,建立表达式树,返回表达式树的根节点。
  2. 遍历表达式,生成求导树
  3. 输出求导树

文法分析

num = [+-] \d+
power = ( x | sin(factor) | cos(factor) ) [^ num]?
factor = power | (expr) | num
term = 
    [+-] factor |
    term * factor
expr =
    [+-] term |
    expr [+-] term
  1. 符号节点 + , 有多个孩子,表示他们相加,其实质表示一个表达式(因子)
  2. 符号节点 * , 有多个孩子,表示他们相乘,其实质表示一个项
  3. 符号节点 sin(),cos() , 有一个孩子,表示对其做三角函数运算,其实质表示三角函数因子和嵌套因子,其孩子只能是因子
  4. 值节点 num
  5. 值节点 x[+−]ax^{[+-]a}x[+]a

节点情形

子节点 : 1,3,4,5

化简操作

对于power节点,可以化简所有对deg为0的求导操作。

对于Mul节点,可以吸收所有同级别的

合格的parser如下


import java.math.BigInteger;
import java.util.Scanner;

public class Myinput {
    private static Scanner sc;
    private static String line;
    private static int cursor;
    private static final BigInteger deglim = BigInteger.valueOf(10000);

    public Myinput() {
        line = "";
        cursor = 0;
    }

    public Cal input() throws Exception {
        sc = new Scanner(System.in);
        if (sc.hasNext()) {
            line = sc.nextLine();
        } else {
            throw new Exception("Empty file");
        }
        cursor = 0;
        return parseExpr();
    }

    // signal function
    private boolean isspace(char ch) { return (ch == '\t' || ch == ' '); }

    private boolean isdigit(char ch) { return (ch >= '0' && ch <= '9'); }

    private boolean issign(char ch) { return (ch == '+' || ch == '-'); }

    // char function
    private  boolean hasNext() { return cursor < line.length(); }

    private char peak() throws Exception {
        if (hasNext()) {
            return line.charAt(cursor);
        }
        else {
            throw new Exception("No more char");
        }
    }

    private char pop() throws Exception {
        if (hasNext()) {
            return line.charAt(cursor++);
        }
        else {
            throw new Exception("No more char");
        }
    }

    private boolean jumpspace() throws Exception {
        boolean ret = false;
        while (hasNext() && isspace(peak())) {
            ret = true;
            pop();
        }
        return ret;
    }

    private void has(char c) throws Exception {
        char now = pop();
        if (now != c) {
            throw new Exception("Not fixed " + c + " but " + now);
        }
    }

    // parse functino
    public int parseSign() throws Exception {
        char now = pop();
        if (now == '+') {
            return 1;
        }
        else if (now == '-') {
            return -1;
        }
        else {
            throw new Exception("Not a sign");
        }
    }

    public BigInteger parseNum() throws Exception {
        char now = peak();
        int start = cursor;
        int end = start;
        if (issign(now)) {
            pop();
        }

        if (!isdigit(peak())) {
            throw new Exception("Not a number");
        }

        while (hasNext() && isdigit(peak())) {
            pop();
            end = cursor;
        }
        return new BigInteger(line.substring(start,end));
    }

    public Cal parseSin() throws Exception {
        jumpspace();
        has('s');
        has('i');
        has('n');
        jumpspace();
        has('(');
        jumpspace();

        final Cal sin = parseFactor();

        jumpspace();
        has(')');
        jumpspace();

        BigInteger deg = BigInteger.ONE;
        if (hasNext() && peak() == '^') {
            pop();
            jumpspace();
            deg = parseNum();
            if (deg.abs().compareTo(deglim) > 0) {
                throw new Exception("degree limit for Sin");
            }
        }


        return new Sin(sin,deg);
    }

    public Cal parseCos() throws Exception {
        jumpspace();
        has('c');
        has('o');
        has('s');
        jumpspace();
        has('(');
        jumpspace();
        final Cal cos = parseFactor();

        jumpspace();
        has(')');
        jumpspace();

        BigInteger deg = BigInteger.ONE;
        if (hasNext() && peak() == '^') {
            pop();
            jumpspace();
            deg = parseNum();
            if (deg.abs().compareTo(deglim) > 0) {
                throw new Exception("degree limit for Cos");
            }
        }

        return new Cos(cos,deg);
    }

    public Cal parsePower() throws Exception {
        jumpspace();
        has('x');
        jumpspace();

        BigInteger deg = BigInteger.ONE;
        if (hasNext() && peak() == '^') {
            pop();
            jumpspace();
            deg = parseNum();
            if (deg.abs().compareTo(deglim) > 0) {
                throw new Exception("degree limit for Power");
            }
        }
        return new Pow(deg);
    }

    public Cal parseFactor() throws Exception {
        jumpspace();
        char now = peak();
        Cal ret = null;
        if (issign(now) || isdigit(now)) { // number
            ret = new Val(parseNum());
        }
        else if (now == 'x') { // x power
            ret = parsePower();
        }
        else if (now == 's') { // sin power
            ret = parseSin();
        }
        else if (now == 'c') { // cos power
            ret = parseCos();
        }
        else if (now == '(') {
            has('(');
            ret = parseExprFactor();
            has(')');
        }

        return ret;
    }

    public Mul parseTerm() throws Exception {
        jumpspace();
        Mul ret = new Mul();
        if (issign(peak())) {
            ret.multi(new Val(parseSign()));
        }

        jumpspace();
        ret.multi(parseFactor());
        jumpspace();

        while (hasNext() && peak() == '*') {
            pop();
            ret.multi(parseFactor());
            jumpspace();
        }

        return ret;
    }

    public Plus parseExprFactor() throws Exception {
        jumpspace();
        Plus ret = new Plus();
        Mul tmp;
        if (issign(peak())) {
            tmp = new  Mul(new Val(parseSign()), parseTerm());
        }
        else {
            tmp = parseTerm();
        }

        ret.add(tmp);
        jumpspace();

        while (hasNext()  && peak() != ')') {
            if (parseSign() == 1) {
                tmp = parseTerm();
            }
            else {
                tmp = new Mul(new Val(-1), parseTerm());
            }
            ret.add(tmp);
            jumpspace();
        }

        return ret;
    }

    public Plus parseExpr() throws Exception {
        jumpspace();
        Plus ret = new Plus();
        Mul tmp;
        if (issign(peak())) {
            tmp = new  Mul(new Val(parseSign()), parseTerm());
        }
        else {
            tmp = parseTerm();
        }

        ret.add(tmp);
        jumpspace();

        while (hasNext()) {
            if (parseSign() == 1) {
                tmp = parseTerm();
            }
            else {
                tmp = new Mul(new Val(-1), parseTerm());
            }
            ret.add(tmp);
            jumpspace();
        }

        return ret;
    }
}

加法节点逻辑如下

import java.math.BigInteger;
import java.util.ArrayList;

public class Plus implements Cal {
    private ArrayList<Cal> arr;

    public ArrayList<Cal> getarr() {
        return arr;
    }

    @Override
    public Cal Simplify() {
        Val tmp = new Val(0);
        ArrayList<Cal> narr = new ArrayList<Cal>(arr.size());

        if (arr.size() == 1) {
            return arr.get(0);
        }


        for (int i = 0;i < arr.size();i++) {
            int rmflag = 0;
            Cal ai = arr.get(i).Simplify();

            if (ai instanceof Val) {
                tmp.add((Val)ai);
                rmflag = 1;
            }
            else if (ai instanceof Mul) {
                Mul mai = (Mul) ai;
                if (mai.getarr().size() == 1
                    && (mai.getarr().get(0) instanceof Val)) {
                    tmp.add((Val) mai.getarr().get(0));
                    rmflag = 1;
                }
            }
            else {
                narr.add(ai);
                rmflag = 1;
            }

            if (rmflag == 0) {
                narr.add(ai);
            }

        }

        if (!tmp.getVal().equals(BigInteger.ZERO)) {
            narr.add(tmp);
        }
        else if (narr.isEmpty()) {
            return tmp;
        }

        return new Plus(narr);
    }

    public Plus() {
        arr = new ArrayList<Cal>(60);
    }

    public Plus(int size) {
        arr = new ArrayList<Cal>(size);
    }

    public Plus(ArrayList<Cal> now) {
        arr = now;
    }

    public Plus(Plus a,Plus b) {
        ArrayList<Cal> aa = a.getarr();
        ArrayList<Cal> bb = b.getarr();
        arr = new ArrayList<Cal>(aa.size() + bb.size() + 10);
        arr.addAll(aa);
        arr.addAll(bb);
    }

    public Plus(Cal... arg) {
        arr = new ArrayList<Cal>(arg.length * 2);
        for (int i = 0; i < arg.length; i++) {
            arr.add(arg[i]);
        }
    }

    public void add(Cal now) {
        arr.add(now);
    }

    public void add(Plus now) {
        arr.addAll(now.getarr());
    }

    @Override
    public Cal diff() {
        Plus ret = new Plus(arr.size());
        for (int i = 0;i < arr.size();i++) {
            Cal zyy = arr.get(i).Simplify().diff().Simplify();
            if (zyy instanceof Plus) {
                ret.add((Plus) zyy);
            } else {
                ret.add(zyy);
            }
        }
        ret.Simplify();
        return ret;
    }

    @Override
    public String toString() {
        StringBuffer strbf = new StringBuffer();
        for (int i = 0; i < arr.size(); i++) {
            strbf.append(arr.get(i).toString());
            if (i + 1 < arr.size()) {
                strbf.append('+');
            }
        }
        String ret = strbf.toString();
        if (ret.length() == 0) {
            return "0";
        }
        return ret;
    }
}

乘法节点逻辑如下

import java.math.BigInteger;
import java.util.ArrayList;

public class Mul implements Cal {
    private ArrayList<Cal> arr;

    public ArrayList<Cal> getarr() {
        return arr;
    }

    @Override
    public Cal Simplify() {
        ArrayList<Cal> narr = new ArrayList<Cal>(arr.size());
        Val tmp = new Val(1);
        Pow tmq = new Pow(BigInteger.ZERO);

        if (arr.size() == 1) {
            return arr.get(0);
        }

        for (int i = 0; i < arr.size(); i++) {
            int svflag = 1;

            Cal ai = arr.get(i).Simplify();

            if (ai instanceof Val) {
                tmp.multi((Val) ai);
                svflag = 0;
            }
            else if (ai instanceof Pow) {
                tmq.multi((Pow) ai);
                svflag = 0;
            }
            if (svflag == 1) {
                narr.add(ai);
            }
        }

        if (tmp.getVal().equals(BigInteger.ZERO)) {
            return tmp;
        }
        else if (!tmp.getVal().equals(BigInteger.ONE)) {
            narr.add(tmp);
        }

        if (!tmq.getDeg().equals(BigInteger.ZERO)) {
            narr.add(tmq);
        }

        if (narr.isEmpty()) {
            return new Val(BigInteger.ONE);
        }

        return new Mul(narr);
    }

    public Mul() {
        arr = new ArrayList<Cal>(60);
    }

    public Mul(int size) {
        arr = new ArrayList<Cal>(size);
    }

    public Mul(Mul a,Mul b) {
        ArrayList<Cal> aa = a.getarr();
        ArrayList<Cal> bb = b.getarr();
        arr = new ArrayList<Cal>(aa.size() + bb.size() + 10);
        arr.addAll(aa);
        arr.addAll(bb);
    }

    public Mul(Cal... arg) {
        arr = new ArrayList<Cal>(arg.length * 2);
        for (int i = 0; i < arg.length; i++) {
            arr.add(arg[i]);
        }
    }

    public Mul(ArrayList<Cal> now) {
        arr = now;
    }

    public void multi(Cal now) {
        arr.add(now);
    }

    public void multi(Mul now) {
        arr.addAll(now.getarr());
    }

    @Override
    public Cal diff() {
        Plus ret = new Plus(arr.size());
        ArrayList<Cal> tmp;
        for (int i = 0; i < arr.size(); i++) {
            tmp = (ArrayList<Cal>) arr.clone();
            tmp.remove(i);
            Cal xsy = arr.get(i).Simplify().diff().Simplify();

            if (xsy instanceof Mul) {
                tmp.addAll(((Mul) xsy).getarr());
            } else {
                tmp.add(xsy);
            }

            ret.add(new Mul(tmp));
        }
        return ret.Simplify();
    }

    @Override
    public String toString() {
        StringBuffer strbf = new StringBuffer();
        for (int i = 0; i < arr.size(); i++) {
            if (arr.get(i) instanceof Plus) {
                strbf.append('(');
            }
            strbf.append(arr.get(i).toString());
            if (arr.get(i) instanceof Plus) {
                strbf.append(')');
            }
            if (i + 1 < arr.size()) {
                strbf.append('*');
            }
        }
        return strbf.toString();
    }
}

```
下载方式:https://pan.quark.cn/s/c9b9b647468b ### 初级JSP程序设计教程核心内容解析#### 一、JSP基础概述JSP(JavaServer Pages)是由Sun Microsystems公司创建的一种动态网页技术规范,主要应用于构建动态网站及Web应用。JSP技术使得开发者能够将动态数据与静态HTML文档整合,从而实现网页内容的灵活性可变性。##### JSP的显著特性:1. **动态与静态内容的分离**:JSP技术支持将动态数据(例如数据库查询结果、实间等)嵌入到静态HTML文档中。这种设计方法增强了网页的适应性可维护性。2. **易用性**:开发者可以利用常规的HTML编辑工具来编写静态部分,并通过简化的标签技术将动态内容集成到页面中。3. **跨平台兼容性**:基于Java平台的JSP具有优良的跨操作系统运行能力,能够在多种不同的系统环境中稳定工作。4. **强大的后台支持**:JSP能够通过JavaBean组件访问后端数据库及其他资源,以实现复杂的数据处理逻辑。5. **执行效率高**:JSP页面在初次被请求会被转换为Servlet,随后的请求可以直接执行编译后的Servlet代码,从而提升了服务响应的效率。#### 二、JSP指令的运用JSP指令用于设定整个JSP页面的行为规范。这些指令通常放置在页面的顶部,向JSP容器提供处理页面的相关指导信息。##### 主要的指令类型:1. **Page指令**: - **语法结构**:`<%@ page attribute="value" %>` - **功能**:定义整个JSP页面的运行特性,如设定页面编码格式、错误处理机制等。 - **实例**: ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值