【系列08】端侧AI:构建与部署高效的本地化AI模型 第7章:架构设计与高效算子

端侧AI架构与算子优化解析

第7章:架构设计与高效算子

要将AI模型成功部署到端侧,除了对现有模型进行压缩和优化,更根本的方法是在设计之初就考虑其在资源受限环境下的运行效率。本章将深入探讨如何设计高效的网络架构,以及如何理解并优化常用的核心算子。


高效网络架构设计

传统的网络架构如VGG、ResNet等,虽然在性能上表现出色,但其庞大的参数量和计算量并不适合端侧部署。因此,研究人员设计了一系列轻量级、高效的网络架构,它们在保证性能的同时,极大地减少了计算开销。

  • MobileNet:MobileNet系列模型的核心思想是使用**深度可分离卷积(Depthwise Separable Convolution)**来替代传统的标准卷积。一个标准卷积操作同时在通道和空间维度上进行滤波,计算量巨大。而深度可分离卷积将其分解为两个更简单的步骤:

    1. 逐通道卷积(Depthwise Convolution):只在每个输入通道上进行卷积,不改变通道数。

    2. 逐点卷积(Pointwise Convolution):使用1×1卷积来组合所有通道的输出。

      这种分解极大地减少了计算量和参数数量,使得MobileNet系列成为移动和端侧设备的首选。

  • ShuffleNet:ShuffleNet系列模型的设计灵感来自于通道混洗(Channel Shuffle)。其核心创新在于:

    评论
    成就一亿技术人!
    拼手气红包6.0元
    还能输入1000个字符
     
    红包 添加红包
    表情包 插入表情
     条评论被折叠 查看
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    技术与健康

    你的鼓励将是我最大的创作动力!

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值