Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.
Example 1:
Input:
1
/ \
0 2
L = 1
R = 2
Output:
1
\
2
Example 2:
Input:
3
/ \
0 4
\
2
/
1
L = 1
R = 3
Output:
3
/
2
/
1
分析:
因为是二叉搜索树,如果root->val比l小,那么整个左子树都可以扔掉;如果root->val比r小,则右子树也可以扔掉。在下面的算法理里,如果越界,返回其没越界的另一个子树。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
static const auto __ = []() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
return nullptr;
}();
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int &L, int &R) {
if(root==NULL)
return NULL;
root->left = trimBST(root->left, L,R);
root->right = trimBST(root->right, L, R);
if(root->val<L||root->val>R)
{
if(root->left!=NULL)
return root->left;
if(root->right!=NULL)
return root->right;
return NULL;
}
return root;
}
};
本文介绍了一种算法,用于修剪二叉搜索树,使其所有元素位于给定的最低和最高边界[L, R]之间。通过递归地修剪左子树和右子树,确保所有节点值都在指定范围内。如果根节点的值超出范围,将返回未越界的子树作为新的根。
537

被折叠的 条评论
为什么被折叠?



