day53 补

本文介绍了如何使用动态规划解决LeetCode中的1143号问题——最长公共子序列,通过分析确定dp数组、递推公式、初始化和遍历顺序,展示了C++和Java代码实现。

1143.最长公共子序列

力扣题目链接(opens new window)

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

  • 输入:text1 = "abcde", text2 = "ace"
  • 输出:3
  • 解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

  • 输入:text1 = "abc", text2 = "abc"
  • 输出:3
  • 解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

  • 输入:text1 = "abc", text2 = "def"
  • 输出:0
  • 解释:两个字符串没有公共子序列,返回 0。

提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。

#算法公开课

《代码随想录》算法视频公开课 (opens new window)动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

继续动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?

这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 (opens new window)中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。

  1. 确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

代码如下:

if (text1[i - 1] == text2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}

1
2
3
4
5

  1. dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

代码:

vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));

1

  1. 确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

1143.最长公共子序列

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

  1. 举例推导dp数组

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

1143.最长公共子序列1

最后红框dp[text1.size()][text2.size()]为最终结果

以上分析完毕,C++代码如下:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

#其他语言版本

#Java:

/*
	二维dp数组
*/
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        // char[] char1 = text1.toCharArray();
        // char[] char2 = text2.toCharArray();
	// 可以在一開始的時候就先把text1, text2 轉成char[],之後就不需要有這麼多爲了處理字串的調整
	// 就可以和卡哥的code更一致
 	
        int[][] dp = new int[text1.length() + 1][text2.length() + 1]; // 先对dp数组做初始化操作
        for (int i = 1 ; i <= text1.length() ; i++) {
            char char1 = text1.charAt(i - 1);
            for (int j = 1; j <= text2.length(); j++) {
                char char2 = text2.charAt(j - 1);
                if (char1 == char2) { // 开始列出状态转移方程
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.length()][text2.length()];
    }
}



/**
	一维dp数组
*/
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n1 = text1.length();
        int n2 = text2.length();

        // 多从二维dp数组过程分析  
        // 关键在于  如果记录  dp[i - 1][j - 1]
        // 因为 dp[i - 1][j - 1]  <!=>  dp[j - 1]  <=>  dp[i][j - 1]
        int [] dp = new int[n2 + 1];

        for(int i = 1; i <= n1; i++){

            // 这里pre相当于 dp[i - 1][j - 1]
            int pre = dp[0];
            for(int j = 1; j <= n2; j++){

                //用于给pre赋值
                int cur = dp[j];
                if(text1.charAt(i - 1) == text2.charAt(j - 1)){
                    //这里pre相当于dp[i - 1][j - 1]   千万不能用dp[j - 1] !!
                    dp[j] = pre + 1;
                } else{
                    // dp[j]     相当于   dp[i - 1][j]
                    // dp[j - 1] 相当于   dp[i][j - 1]
                    dp[j] = Math.max(dp[j], dp[j - 1]);
                }

                //更新dp[i - 1][j - 1], 为下次使用做准备
                pre = cur;
            }
        }

        return dp[n2];
    }
}
`day.js` 是一个轻量级的 JavaScript 时间处理库,常用于前端项目中处理日期和时间。你提到的“周 `ww`”是 `dayjs` 中用于格式化日期的一个占位符,表示一年中的第几周(Week of Year)。 下面详细介绍如何使用 `dayjs` 进行日期格式化,特别是关于“周”的处理。 --- ### ✅ 使用 `dayjs` 格式化周(`ww`) ```javascript // 引入 dayjs import dayjs from 'dayjs'; // 示例:获取某一天是一年中的第几周 const date = dayjs('2024-03-15'); // 任意日期 const formatted = date.format('YYYY-MM-DD 是第 ww 周'); // 使用 ww 表示周数 console.log(formatted); // 输出: "2024-03-15 是第 11 周" ``` --- ### 🔍 常用格式化字符串说明: | 格式 | 含义 | |------|------| | `YYYY` | 四位年份(如 2024) | | `MM` | 月份(01-12) | | `DD` | 日期(01-31) | | `ww` | 一年中的第几周(01-53),不足两位零 | | `W` | ISO 周数(不零) | | `ddd` | 星期几缩写(如 Mon) | | `dddd` | 星期几全称(如 Monday) | --- ### 🌰 更多示例: ```javascript import dayjs from 'dayjs'; const now = dayjs(); console.log(now.format('YYYY')); // 2024 console.log(now.format('MM')); // 03 console.log(now.format('DD')); // 15 console.log(now.format('YYYY-MM-DD')); // 2024-03-15 console.log(now.format('YYYY 第 ww 周')); // 2024 第 11 周 console.log(now.format('dddd')); // Friday ``` --- ### ⚠️ 注意事项: 1. **周的起始日**:默认情况下,`ww` 使用的是 **周日为一周的开始**。 2. 如果你想使用 **周一为一周的开始**,需要引入 `isoWeek` 插件或使用 ISO 标准: ```javascript import dayjs from 'dayjs'; import isoWeek from 'dayjs/plugin/isoWeek'; import weekOfYear from 'dayjs/plugin/weekOfYear'; dayjs.extend(isoWeek); dayjs.extend(weekOfYear); const date = dayjs('2024-03-15'); console.log(date.isoWeek()); // 获取 ISO 周数(周一为第一天) console.log(date.format('GGGG-[W]WW')); // ISO 格式:2024-W11 ``` --- ### 💡 提示: - `ww` 是 `.format()` 方法中使用的字符串模板。 - 如果你需要获取数值型的“第几周”,可以使用 `.week()` 或 `.isoWeek()` 方法(需插件): ```javascript dayjs.extend(require('dayjs/plugin/weekOfYear')); const weekNum = dayjs('2024-03-15').week(); // 返回数字 11 ``` --- ### ✅ 安装 dayjs(如果还没安装) ```bash npm install dayjs ``` 然后在项目中导入: ```javascript import dayjs from 'dayjs'; ``` --- ### 总结 使用 `dayjs` 的 `format('ww')` 可以轻松将日期格式化为“第几周”。如果你需要更精确的周计算(如 ISO 周),建议启用相关插件。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值