Codeforces 598D Igor In the Museum 离线处理+bfs

本文介绍了一个有趣的问题:如何在一个由空地和障碍组成的矩形博物馆中,从指定起点出发尽可能多地观看墙上的画作。文章提供了算法思路及实现代码,采用离线处理的方式避免重复搜索,确保效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Igor is in the museum and he wants to see as many pictures as possible.

Museum can be represented as a rectangular field of n × m cells. Each cell is either empty or impassable. Empty cells are marked with '.', impassable cells are marked with '*'. Every two adjacent cells of different types (one empty and one impassable) are divided by a wall containing one picture.

At the beginning Igor is in some empty cell. At every moment he can move to any empty cell that share a side with the current one.

For several starting positions you should calculate the maximum number of pictures that Igor can see. Igor is able to see the picture only if he is in the cell adjacent to the wall with this picture. Igor have a lot of time, so he will examine every picture he can see.

Input

First line of the input contains three integers nm and k (3 ≤ n, m ≤ 1000, 1 ≤ k ≤ min(n·m, 100 000)) — the museum dimensions and the number of starting positions to process.

Each of the next n lines contains m symbols '.', '*' — the description of the museum. It is guaranteed that all border cells are impassable, so Igor can't go out from the museum.

Each of the last k lines contains two integers x and y (1 ≤ x ≤ n, 1 ≤ y ≤ m) — the row and the column of one of Igor's starting positions respectively. Rows are numbered from top to bottom, columns — from left to right. It is guaranteed that all starting positions are empty cells.

Output

Print k integers — the maximum number of pictures, that Igor can see if he starts in corresponding position.

Sample Input

Input
5 6 3
******
*..*.*
******
*....*
******
2 2
2 5
4 3
Output
6
4
10
Input
4 4 1
****
*..*
*.**
****
3 2
Output
8
题意:给你一副n*m的图,k次询问,保证每次询问都在“.”,问每次询问能看到多少画?


思路:一看到题目,不是个简单的bfs吗?扩展4个方向如果碰到“*”就+1,但是并不能k次询问,k次bfs。因此TLE了好几次。

所以要先遍历整个图,找每个“.”的位置都能看到的画,所以只要将连通的点存储起来,最后一并赋值,离线处理一下。k次询问直接输出即可。


因为粗心,将v[MAX],val[MAX]数组一并写成char型的,导致wa了几次。(哭.....)

附上AC代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int MAX=1005;
char Map[MAX][MAX];
int v[MAX][MAX],val[MAX][MAX];
int chan[4][2]= {1,0,-1,0,0,1,0,-1},sum,n,m,anc;
struct node
{
    int x,y;
} D[1000000];
void bfs(int x,int y)
{
    sum=0;
    anc=1;
    node now,now1,next;
    now1.x=x,now1.y=y;
    queue<node> Q;
    Q.push(now1);
    v[x][y]=1;
    D[0].x=x,D[0].y=y;
    while(!Q.empty())
    {
        now=Q.front();
        //printf("%d %d\n",now.x,now.y);
        Q.pop();
        int xx,yy;
        for(int i=0; i<4; i++)
        {
            xx=now.x+chan[i][0];
            yy=now.y+chan[i][1];
            if(xx>=0&&xx<n&&yy>=0&&yy<m&&!v[xx][yy]&&Map[xx][yy]!='*')
            {
                next.x=xx;
                next.y=yy;
                Q.push(next);
                D[anc].x=xx;
                D[anc++].y=yy;
                v[xx][yy]=1;
            }
            if(xx>=0&&xx<n&&yy>=0&&yy<m&&!v[xx][yy]&&Map[xx][yy]=='*')
            {
                sum++;
            }
        }
    }
    return ;
}
int main()
{
    int k,x,y;
    while(~scanf("%d%d%d",&n,&m,&k))
    {
        memset(v,0,sizeof(v));
        memset(val,0,sizeof(val));
        for(int i=0; i<n; i++)
            scanf("%s",Map[i]);
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<m; j++)
            {
                if(!v[i][j]&&Map[i][j]=='.')
                {
                    bfs(i,j);
                    //printf("%d  %d  %d\n",sum,i,j);
                    for(int i=0; i<anc; i++)
                    {
                        val[D[i].x][D[i].y]=sum;
                    }
                }
            }
        }
        for(int i=0; i<k; i++)
        {
            scanf("%d%d",&x,&y);
            //printf("%d\n",v[x-1][y-1]);
            printf("%d\n",val[x-1][y-1]);
        }
    }
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值