Codeforces 598D Igor In the Museum 离线处理+bfs

本文介绍了一个有趣的问题:如何在一个由空地和障碍组成的矩形博物馆中,从指定起点出发尽可能多地观看墙上的画作。文章提供了算法思路及实现代码,采用离线处理的方式避免重复搜索,确保效率。

Description

Igor is in the museum and he wants to see as many pictures as possible.

Museum can be represented as a rectangular field of n × m cells. Each cell is either empty or impassable. Empty cells are marked with '.', impassable cells are marked with '*'. Every two adjacent cells of different types (one empty and one impassable) are divided by a wall containing one picture.

At the beginning Igor is in some empty cell. At every moment he can move to any empty cell that share a side with the current one.

For several starting positions you should calculate the maximum number of pictures that Igor can see. Igor is able to see the picture only if he is in the cell adjacent to the wall with this picture. Igor have a lot of time, so he will examine every picture he can see.

Input

First line of the input contains three integers nm and k (3 ≤ n, m ≤ 1000, 1 ≤ k ≤ min(n·m, 100 000)) — the museum dimensions and the number of starting positions to process.

Each of the next n lines contains m symbols '.', '*' — the description of the museum. It is guaranteed that all border cells are impassable, so Igor can't go out from the museum.

Each of the last k lines contains two integers x and y (1 ≤ x ≤ n, 1 ≤ y ≤ m) — the row and the column of one of Igor's starting positions respectively. Rows are numbered from top to bottom, columns — from left to right. It is guaranteed that all starting positions are empty cells.

Output

Print k integers — the maximum number of pictures, that Igor can see if he starts in corresponding position.

Sample Input

Input
5 6 3
******
*..*.*
******
*....*
******
2 2
2 5
4 3
Output
6
4
10
Input
4 4 1
****
*..*
*.**
****
3 2
Output
8
题意:给你一副n*m的图,k次询问,保证每次询问都在“.”,问每次询问能看到多少画?


思路:一看到题目,不是个简单的bfs吗?扩展4个方向如果碰到“*”就+1,但是并不能k次询问,k次bfs。因此TLE了好几次。

所以要先遍历整个图,找每个“.”的位置都能看到的画,所以只要将连通的点存储起来,最后一并赋值,离线处理一下。k次询问直接输出即可。


因为粗心,将v[MAX],val[MAX]数组一并写成char型的,导致wa了几次。(哭.....)

附上AC代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int MAX=1005;
char Map[MAX][MAX];
int v[MAX][MAX],val[MAX][MAX];
int chan[4][2]= {1,0,-1,0,0,1,0,-1},sum,n,m,anc;
struct node
{
    int x,y;
} D[1000000];
void bfs(int x,int y)
{
    sum=0;
    anc=1;
    node now,now1,next;
    now1.x=x,now1.y=y;
    queue<node> Q;
    Q.push(now1);
    v[x][y]=1;
    D[0].x=x,D[0].y=y;
    while(!Q.empty())
    {
        now=Q.front();
        //printf("%d %d\n",now.x,now.y);
        Q.pop();
        int xx,yy;
        for(int i=0; i<4; i++)
        {
            xx=now.x+chan[i][0];
            yy=now.y+chan[i][1];
            if(xx>=0&&xx<n&&yy>=0&&yy<m&&!v[xx][yy]&&Map[xx][yy]!='*')
            {
                next.x=xx;
                next.y=yy;
                Q.push(next);
                D[anc].x=xx;
                D[anc++].y=yy;
                v[xx][yy]=1;
            }
            if(xx>=0&&xx<n&&yy>=0&&yy<m&&!v[xx][yy]&&Map[xx][yy]=='*')
            {
                sum++;
            }
        }
    }
    return ;
}
int main()
{
    int k,x,y;
    while(~scanf("%d%d%d",&n,&m,&k))
    {
        memset(v,0,sizeof(v));
        memset(val,0,sizeof(val));
        for(int i=0; i<n; i++)
            scanf("%s",Map[i]);
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<m; j++)
            {
                if(!v[i][j]&&Map[i][j]=='.')
                {
                    bfs(i,j);
                    //printf("%d  %d  %d\n",sum,i,j);
                    for(int i=0; i<anc; i++)
                    {
                        val[D[i].x][D[i].y]=sum;
                    }
                }
            }
        }
        for(int i=0; i<k; i++)
        {
            scanf("%d%d",&x,&y);
            //printf("%d\n",v[x-1][y-1]);
            printf("%d\n",val[x-1][y-1]);
        }
    }
}


### Problem Overview The problem "Having Been a Treasurer in the Past, I Help Goblins Deceive" involves determining the minimum number of operations required to adjust a sum of money to a target value, given constraints on how much each operation can change the total. ### Problem Statement Given `n` (maximum number of operations), `k` (target value), and `p` (amount by which the total can be changed per operation), the goal is to compute the minimum number of operations needed to reach the target `k` using steps of size `p`. If it's impossible to reach the target within the given constraints, return `-1`. ### Solution Approach The solution involves a greedy strategy to determine the minimum number of steps required to reach the target. It also checks whether it's possible to achieve the target within the allowed number of operations. ### Key Observations - If the absolute value of the target `k` is greater than `n * p`, it's impossible to reach the target, and the result should be `-1`. - The number of steps required to reach the target can be calculated as the quotient of `|k| / p`, with an additional step if there's a remainder. - This approach ensures that the solution is efficient and adheres to the constraints of the problem. ### Code Implementation ```cpp #include <bits/stdc++.h> using namespace std; void solve() { int n, k, p; cin >> n >> k >> p; int res = abs(k) / p; if (abs(k) % p) { res += 1; } if (res > n) { cout << "-1" << endl; } else { cout << res << endl; } } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t; cin >> t; while (t--) { solve(); } return 0; } ``` ### Explanation of the Code - The code reads multiple test cases and processes each one individually. - For each test case, it calculates the minimum number of operations required to reach the target `k` using steps of size `p`. - If the number of operations exceeds `n`, it outputs `-1` to indicate that the target is unreachable. - Otherwise, it outputs the computed number of operations[^2]. ### Example Scenarios Consider the following example: - Input: `n = 5`, `k = 12`, `p = 3` - Output: `4` (since `12 / 3 = 4`) Another example: - Input: `n = 3`, `k = 10`, `p = 3` - Output: `-1` (since `10 / 3 = 3.33`, and `4` operations are needed, which exceeds `n = 3`) ### Time and Space Complexity - **Time Complexity**: `O(1)` per test case, as the computation involves simple arithmetic operations. - **Space Complexity**: `O(1)`, as no additional space is used beyond the input variables. ### Conclusion This problem demonstrates the use of greedy algorithms to solve a practical problem in programming competitions. The approach is both efficient and straightforward, making it suitable for time-constrained environments like contests.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值