Regular Expression Matching

本文介绍了两种实现正则表达式匹配的算法:递归解法和动态规划解法。递归解法通过条件判断来匹配字符串和模式,而动态规划则通过构建二维数组来记录中间结果,提高效率。

Recursive Solution

class Solution {
public:
    bool isMatch(string s, string p) {
        if (p.empty())    return s.empty();

        if ('*' == p[1])
            // x* matches empty string or at least one character: x* -> xx*
            // *s is to ensure s is non-empty
            return (isMatch(s, p.substr(2)) || !s.empty() && (s[0] == p[0] || '.' == p[0]) && isMatch(s.substr(1), p));
        else
            return !s.empty() && (s[0] == p[0] || '.' == p[0]) && isMatch(s.substr(1), p.substr(1));
    }
};

DP Solution


class Solution {
public:
    bool isMatch(string s, string p) {
        /**
         * f[i][j]: if s[0..i-1] matches p[0..j-1]
         * if p[j - 1] != '*'
         *      f[i][j] = f[i - 1][j - 1] && s[i - 1] == p[j - 1]
         * if p[j - 1] == '*', denote p[j - 2] with x
         *      f[i][j] is true iff any of the following is true
         *      1) "x*" repeats 0 time and matches empty: f[i][j - 2]
         *      2) "x*" repeats >= 1 times and matches "x*x": s[i - 1] == x && f[i - 1][j]
         * '.' matches any single character
         */
        int m = s.size(), n = p.size();
        vector<vector<bool>> f(m + 1, vector<bool>(n + 1, false));

        f[0][0] = true;
        for (int i = 1; i <= m; i++)
            f[i][0] = false;
        // p[0.., j - 3, j - 2, j - 1] matches empty iff p[j - 1] is '*' and p[0..j - 3] matches empty
        for (int j = 1; j <= n; j++)
            f[0][j] = j > 1 && '*' == p[j - 1] && f[0][j - 2];

        for (int i = 1; i <= m; i++)
            for (int j = 1; j <= n; j++)
                if (p[j - 1] != '*')
                    f[i][j] = f[i - 1][j - 1] && (s[i - 1] == p[j - 1] || '.' == p[j - 1]);
                else
                    // p[0] cannot be '*' so no need to check "j > 1" here
                    f[i][j] = f[i][j - 2] || (s[i - 1] == p[j - 2] || '.' == p[j - 2]) && f[i - 1][j];

        return f[m][n];
    }
};

To be honest, this algorithm bothers me for a very long time cause I simply don’t get it. Here is the explanation:
Consider s and p are presented as follows:

s:s0,s1,s2,...,si2,si1
p:p0,p1,p2,...,pj2,pj1

1. If pj1 is not *, like this:
s:s0,s1,s2,...,si2,si1
p:p0,p1,p2,...,pj2,a

then the only way f[i][j] can be true is that: s0,s1,s2,...,si2 matches p0,p1,p2,...,pj2 as well as si1 matches pj1.
2. If pj1 is *, like this:
s:s0,s1,s2,...,si2,si1
p:p0,p1,p2,...,a,

then the only way f[i][j] can be true is that:
– For any length of s, it is equal to p0,p1,p2,...,pj3, which means a, will not appear in s.
– For string s0,s1,s2,...,si2, it is equal to p0,p1,p2,...,pj2,pj1, and any character after si2, it is a match of the character before *
跟网型逆变器小干扰稳定性分析与控制策略优化研究(Simulink仿真实现)内容概要:本文围绕跟网型逆变器的小干扰稳定性展开分析,重点研究其在电力系统中的动态响应特性及控制策略优化问题。通过构建基于Simulink的仿真模型,对逆变器在不同工况下的小信号稳定性进行建模与分析,识别系统可能存在的振荡风险,并提出相应的控制优化方法以提升系统稳定性和动态性能。研究内容涵盖数学建模、稳定性判据分析、控制器设计与参数优化,并结合仿真验证所提策略的有效性,为新能源并网系统的稳定运行提供理论支持和技术参考。; 适合人群:具备电力电子、自动控制或电力系统相关背景,熟悉Matlab/Simulink仿真工具,从事新能源并网、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:① 分析跟网型逆变器在弱电网条件下的小干扰稳定性问题;② 设计并优化逆变器外环与内环控制器以提升系统阻尼特性;③ 利用Simulink搭建仿真模型验证理论分析与控制策略的有效性;④ 支持科研论文撰写、课题研究或工程项目中的稳定性评估与改进。; 阅读建议:建议读者结合文中提供的Simulink仿真模型,深入理解状态空间建模、特征值分析及控制器设计过程,重点关注控制参数变化对系统极点分布的影响,并通过动手仿真加深对小干扰稳定性机理的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值