1002. A+B for Polynomials (25)

本文介绍了使用链表和数组两种方法实现多项式加法的过程。通过对比不同方法的效率,展示了如何读取输入并输出结果。同时,文章还提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 … NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, …, K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < … < N2 < N1 <=1000.

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output

3 2 1.5 1 2.9 0 3.2

思路:一开始的思路是用链表解决。霹雳巴拉写了一百多行代码,递交,只通过两个测试点。。。仔细一看题目,最多就是1000项。。。可能。。。用数组实现更简单。。。如果在考场写链表的话,还是要一定的熟练度的。。。

#include<stdio.h>
#include<stdlib.h>

typedef struct Node *PtrToNode;
typedef PtrToNode Polynomial;
typedef PtrToNode Position;
struct Node {
    int Exp;
    float Coe;
    Position Next;
};


Polynomial Read_Polynomial ( void );
Position Creat_a_PolynomialNode ( void );
Position Find_the_PolynomialLast ( Polynomial P );
Position Attach_to_Polynomial( Polynomial P, Position TmpCell );
Position Find_the_last( Polynomial P );
void Print_Polynomial ( Polynomial P );
Position Add_Polynomial ( Polynomial P1, Polynomial P2 );
int Count_Item ( Polynomial P );

int main ( void )
{
    Polynomial P1 = NULL;
    P1 = Read_Polynomial ( );

    Polynomial P2 = NULL;
    P2 = Read_Polynomial( );


    Polynomial P3 = Add_Polynomial( P1, P2 );
    int count = Count_Item( P3 );
    printf("%d ", count );
    Print_Polynomial( P3 );

    return 0;
}


Polynomial Read_Polynomial ( )
{
    int N = 0;
    scanf("%d", &N );
    Polynomial P = NULL;

    while ( N-- ){
        int temp_exponent = 0;
        float temp_coefficient = 0;
        scanf("%d", &temp_exponent );
        scanf("%f", &temp_coefficient );
        Position TmpCell = Creat_a_PolynomialNode ( );
        TmpCell->Exp = temp_exponent;
        TmpCell->Coe = temp_coefficient;
        TmpCell->Next = NULL;
        P = Attach_to_Polynomial ( P, TmpCell );
    }
    return P;
}

Position Creat_a_PolynomialNode ( void )
{
    Position P = ( Position ) malloc ( sizeof ( struct Node ) );
    return P;
}
Position Attach_to_Polynomial( Polynomial P, Position TmpCell )
{
    Position last = P;
    if ( last ){
        last = Find_the_last( P );
        last->Next = TmpCell;
    }else {
        P = TmpCell;
    }

    return P;
}
Position Find_the_last( Polynomial P )
{
    Position last = P;
    while ( last->Next ){
        last = last->Next;
    }
    return last;
}
void Print_Polynomial ( Polynomial P )
{
    Position Temp_P = P;
    while ( Temp_P ){
        if ( Temp_P->Next ){
            printf("%d %.1f ",  Temp_P->Exp, Temp_P->Coe);
            Temp_P = Temp_P->Next;
        }else {
            printf("%d %.1f",  Temp_P->Exp, Temp_P->Coe);
            Temp_P = Temp_P->Next;
        }

    }
}


Position Add_Polynomial ( Polynomial P1, Polynomial P2 )
{
    Polynomial P = NULL;

    while( P1 && P2 ){
        if ( P1->Exp  >  P2->Exp ){
            Position temp = Creat_a_PolynomialNode();
            temp->Exp = P1->Exp;
            temp->Coe = P1->Coe;
            temp->Next = NULL;
            P = Attach_to_Polynomial(P, temp);
            P1 = P1->Next;
        }else if ( P1->Exp  ==  P2->Exp ){
            Position temp = Creat_a_PolynomialNode();
            temp->Exp = P1->Exp;
            temp->Coe = P1->Coe;
            temp->Next = NULL;
            P = Attach_to_Polynomial(P, temp);
            P1 = P1->Next;
            P2 = P2->Next;
        }else if ( P1->Exp < P2->Exp){
            Position temp = Creat_a_PolynomialNode();
            temp->Exp = P2->Exp;
            temp->Coe = P2->Coe;
            temp->Next = NULL;
            P = Attach_to_Polynomial(P, temp);
            P2 = P2->Next;
        }
    }
    if ( P1 ){
        Position last = Find_the_last( P );
        last->Next = P1;
    }
    if ( P2 ){
        Position last = Find_the_last( P );
        last->Next = P2;
    }
    return P;
}


int Count_Item ( Polynomial P )
{
    int count = 0;
    Position Temp_P = P;

    while ( Temp_P){
        count++;
        Temp_P = Temp_P->Next;
    }

    return count;
}

查看别人更加快捷的解法,果然用数组在时间上更加经济,空间上可能会浪费一些。

#include<stdio.h>
double coefficient[1001];
int main()
{
    int i,count=0,n,index;
    double temp;
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        scanf("%d%lf",&index,&temp);
        coefficient[index]+=temp;
    }
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        scanf("%d%lf",&index,&temp);
        coefficient[index]+=temp;
    }
    for(i=1000;i>=0;i--)
    {
        if(coefficient[i]!=0)
        {
            count++;
            index=i;
        }
    }
    if(count>0)
    {
        printf("%d ",count);
        for(i=1000;i>index;i--)
        {
            if(coefficient[i]!=0)
                printf("%d %.1lf ",i,coefficient[i]);
        }
        printf("%d %.1lf",i,coefficient[i]);
    }
    else
        printf("%d",count);

}
"sgmediation.zip" 是一个包含 UCLA(加利福尼亚大学洛杉矶分校)开发的 sgmediation 插件的压缩包。该插件专为统计分析软件 Stata 设计,用于进行中介效应分析。在社会科学、心理学、市场营销等领域,中介效应分析是一种关键的统计方法,它帮助研究人员探究变量之间的因果关系,尤其是中间变量如何影响因变量与自变量之间的关系。Stata 是一款广泛使用的统计分析软件,具备众多命令和用户编写的程序来拓展其功能,sgmediation 插件便是其中之一。它能让用户在 Stata 中轻松开展中介效应分析,无需编写复杂代码。 下载并解压 "sgmediation.zip" 后,需将解压得到的 "sgmediation" 文件移至 Stata 的 ado 目录结构中。ado(ado 目录并非“adolescent data organization”缩写,而是 Stata 的自定义命令存放目录)目录是 Stata 存放自定义命令的地方,应将文件放置于 "ado\base\s" 子目录下。这样,Stata 启动时会自动加载该目录下的所有 ado 文件,使 "sgmediation" 命令在 Stata 命令行中可用。 使用 sgmediation 插件的步骤如下:1. 安装插件:将解压后的 "sgmediation" 文件放入 Stata 的 ado 目录。如果 Stata 安装路径是 C:\Program Files\Stata\ado\base,则需将文件复制到 C:\Program Files\Stata\ado\base\s。2. 启动 Stata:打开 Stata,确保软件已更新至最新版本,以便识别新添加的 ado 文件。3. 加载插件:启动 Stata 后,在命令行输入 ado update sgmediation,以确保插件已加载并更新至最新版本。4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值