#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
const int MAXN=50;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
inline int gcd(int a,int b)
{
int t;
while(b!=0)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;//先除后乘防溢出
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;
for(int i=0; i<=var; i++)
{
x[i]=0;
free_x[i]=true;
}
//转换为阶梯阵.
col=0; // 当前处理的列
for(k = 0; k < equ && col < var; k++,col++)
{
// 枚举当前处理的行.
// 找到该c
多项式求整数解(代码注释比较详细)
最新推荐文章于 2025-01-18 19:15:34 发布
本文详细探讨如何通过编程实现求解多项式的整数解,适合对数学和编程感兴趣的读者。内容涵盖多项式方程的理论背景,以及具体的代码实现过程,通过实例解析算法的每一步操作。

最低0.47元/天 解锁文章
1051

被折叠的 条评论
为什么被折叠?



