Codeforces Round #439 C.The Intriguing Obsession(组合数学)

本文介绍了一道关于在三个不同颜色的群岛之间搭建桥梁的问题,通过组合数学的方法求解所有合法搭建方案的数量,并提供了一个C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. The Intriguing Obsession

            time limit per test1 second
            memory limit per test256 megabytes
            inputstandard input
            outputstandard output
            — This is not playing but duty as allies of justice, Nii-chan!

            — Not allies but justice itself, Onii-chan!

With hands joined, go everywhere at a speed faster than our thoughts! This time, the Fire Sisters — Karen and Tsukihi — is heading for somewhere they’ve never reached — water-surrounded islands!

There are three clusters of islands, conveniently coloured red, blue and purple. The clusters consist of a, b and c distinct islands respectively.

Bridges have been built between some (possibly all or none) of the islands. A bridge bidirectionally connects two different islands and has length 1. For any two islands of the same colour, either they shouldn’t be reached from each other through bridges, or the shortest distance between them is at least 3, apparently in order to prevent oddities from spreading quickly inside a cluster.

The Fire Sisters are ready for the unknown, but they’d also like to test your courage. And you’re here to figure out the number of different ways to build all bridges under the constraints, and give the answer modulo 998 244 353. Two ways are considered different if a pair of islands exist, such that there’s a bridge between them in one of them, but not in the other.

Input
The first and only line of input contains three space-separated integers a, b and c (1 ≤ a, b, c ≤ 5 000) — the number of islands in the red, blue and purple clusters, respectively.

Output
Output one line containing an integer — the number of different ways to build bridges, modulo 998 244 353.
Examples

input
1 1 1
output
8
input
1 2 2
output
63
input
1 3 5
output
3264
input
6 2 9
output
813023575

Note
In the first example, there are 3 bridges that can possibly be built, and no setup of bridges violates the restrictions. Thus the answer is23 = 8.
In the second example, the upper two structures in the figure below are instances of valid ones, while the lower two are invalid due to the blue and purple clusters, respectively.
这里写图片描述


题意是:有三个群岛。群岛上面会有a,b,c个岛屿,每个群岛上面的岛屿不能相连,每两个群岛上面的两个或多个岛屿不能同时连接在一个岛屿上面,问在三个群岛中有多少种连接方式。


组合数学:
两两群岛进行组合的连接方式的乘积。
两个群岛中的岛屿进行排列组合一共有方式。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<queue>
using namespace std;
const int N=5005;
#define mod 998244353
long long int c[N][N];
void init()
{
    c[0][0]=1;
    for(int i=1;i<=N;i++)
    {
        c[i][0]=1;
    }
    for(int i=1;i<N-1;i++)
    {
        c[i][i]=1;
        for(int j=1;j<i;j++)
        {
            c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;//杨辉三角组合数学的运用
        }
    }
}
long long int solve(long long int n,long long int m)
{
    long long int q=min(n,m);
    long long int ans=0;
    long long int k=1;
    for(long long int i=0;i<=q;i++)
    {
        if(i!=0)
        k=(k*i)%mod;
       ans=(ans+(((c[n][i]*c[m][i])%mod)*k)%mod)%mod;
    }
    return ans;
}
int main()
{
        long long int a,b,c;
        init();
        scanf("%lld%lld%lld",&a,&b,&c);
        long long int ans1,ans2,ans3;
        ans1=solve(a,b),ans2=solve(a,c),ans3=solve(b,c);
        printf("%I64d\n",(((ans1*ans2)%mod)*ans3)%mod);
        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值