神经网络入门
1.基础知识代码
import pickle as pk
import os
import numpy as np
import matplotlib.pyplot as plt
CIFAR_DIR = "D:\\xunlian"
print(os.listdir(CIFAR_DIR))
with open(os.path.join(CIFAR_DIR, "data_batch_1"), 'rb') as f:
data = pk.load(f, encoding='bytes')
image_arr = data[b'data'][100]
image_arr = image_arr.reshape((3, 32, 32))
image_arr = image_arr.transpose((1, 2, 0))
plt.imshow(image_arr)
plt.show()
1)因为tensorflow2.x(python3.x)和tensorflow1.x(python2.x)很多东西不兼容,所以关键部分写了注释,大家可以更加自己安装的版本选择代码
2)CIFAR_DIR变量为文件路径,这里路径一定要是\\,本代码用的是cifar10-batch数据集
2.二分类逻辑斯蒂回归模型实现
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
import pickle as pk
import os
import numpy as np
CIFAR_DIR = "D:\\xunlian"
def load_data(filename):
with open(filename, 'rb') as f:
data = pk.load(f, encoding='bytes')
return data[b'data'], data[b'labels']
class CifarData:
def __init__(self, filenames, need_shuffle):
all_data = []
all_labels = []
for filename in filenames:
data, labels =load_data(filenames)
for item, label in zip(data, labels):
if label in [0,1]:
all_data.append(item)
all_labels.append(label)
self._data = np.vstack(all_data)
self._data = self._data / 127.5 -1
self._labels = np.hstack(all_labels)
self._num_examples = self._data.shape[0]
self._need_shuffle = need_shuffle
self._indicator = 0
if self._need_shuffle:
self._shuffle_data()
def _shuffle_data(self):
p = np.random.permutation(self._num_examples)
self._data = self._data[p]
self._labels = self._labels[p]
def next_batch(self, batch_size):
end_indicator = self._indicator + batch_size
if end_indicator > self._num_examples:
if self._need_shuffle:
self._shuffle_data()
self._indicator = 0
end_indicator = batch_size
else:
raise Exception("have no more examples")
if end_indicator > self._num_examples:
raise Exception("batch size is larger than all examples")
batch_data = self._data[self._indicator:end_indicator]
batch_labels = self._labels[self._indicator:end_indicator]
self._indicator = end_indicator
return batch_data, batch_labels
test_filenames = os.path.join(CIFAR_DIR, 'test_batch')
test_data = CifarData(test_filenames, False)
for i in range(1 , 6):
train_filenames = os.path.join(CIFAR_DIR, 'data_batch_%d' % i)
train_data = CifarData(train_filenames, True)
x = tf.compat.v1.placeholder(tf.float32, [None,3072])
y = tf.compat.v1.placeholder(tf.int64, [None])
y_reshaped = tf.reshape(y, (-1,1))
y_reshaped_float = tf.cast(y_reshaped, tf.float32)
w = tf.compat.v1.get_variable('w', [x.get_shape()[-1], 1], initializer=tf.random_normal_initializer(0, 1))
b = tf.compat.v1.get_variable('b', [1], initializer=tf.constant_initializer(0.0))
y_ = tf.matmul(x, w) + b
p_y_1 = tf.nn.sigmoid(y_)
loss = tf.reduce_mean(tf.square(y_reshaped_float - p_y_1))
predict = p_y_1 > 0.5
correct_prediction = tf.equal(tf.cast(predict, tf.int64), y_reshaped)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
with tf.name_scope('train_op'):
train_op = tf.compat.v1.train.AdamOptimizer(1e-3).minimize(loss)
init = tf.compat.v1.global_variables_initializer()
batch_size = 20
train_steps = 100000
test_steps = 100
with tf.compat.v1.Session() as sess:
sess.run(init)
for i in range(train_steps):
batch_data, batch_labels = train_data.next_batch(batch_size)
loss_val, acc_val, _ = sess.run([loss, accuracy, train_op],feed_dict = {x: batch_data, y: batch_labels})
if i % 500 == 0:
print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' % (i, loss_val, acc_val))
if i % 5000 == 0:
test_data = CifarData(test_filenames, False)
all_test_acc_val = []
for j in range(test_steps):
test_batch_data, test_batch_labels = test_data.next_batch(batch_size)
test_acc_val = sess.run([accuracy], feed_dict = {x:test_batch_data, y:test_batch_labels})
all_test_acc_val.append(test_acc_val)
test_acc = np.mean(all_test_acc_val)
print('[Test] Step: %d, acc: %4.5f' % (i, test_acc))
这个代码是单个神经元的代码
3.多分类逻辑斯蒂回归模型实现
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
import pickle as pk
import os
import numpy as np
CIFAR_DIR = "D:\\xunlian"
def load_data(filename):
with open(filename, 'rb') as f:
data = pk.load(f, encoding='bytes')
return data[b'data'], data[b'labels']
class CifarData:
def __init__(self, filenames, need_shuffle):
all_data = []
all_labels = []
for filename in filenames:
data, labels =load_data(filenames)
all_data.append(data)
all_labels.append(labels)
self._data = np.vstack(all_data)
self._data = self._data / 127.5 -1
self._labels = np.hstack(all_labels)
self._num_examples = self._data.shape[0]
self._need_shuffle = need_shuffle
self._indicator = 0
if self._need_shuffle:
self._shuffle_data()
def _shuffle_data(self):
p = np.random.permutation(self._num_examples)
self._data = self._data[p]
self._labels = self._labels[p]
def next_batch(self, batch_size):
end_indicator = self._indicator + batch_size
if end_indicator > self._num_examples:
if self._need_shuffle:
self._shuffle_data()
self._indicator = 0
end_indicator = batch_size
else:
raise Exception("have no more examples")
if end_indicator > self._num_examples:
raise Exception("batch size is larger than all examples")
batch_data = self._data[self._indicator:end_indicator]
batch_labels = self._labels[self._indicator:end_indicator]
self._indicator = end_indicator
return batch_data, batch_labels
test_filenames = os.path.join(CIFAR_DIR, 'test_batch')
test_data = CifarData(test_filenames, False)
for i in range(1 , 6):
train_filenames = os.path.join(CIFAR_DIR, 'data_batch_%d' % i)
train_data = CifarData(train_filenames, True)
x = tf.compat.v1.placeholder(tf.float32, [None,3072])
y = tf.compat.v1.placeholder(tf.int64, [None])
w = tf.compat.v1.get_variable('w', [x.get_shape()[-1], 10], initializer=tf.random_normal_initializer(0, 1))
b = tf.compat.v1.get_variable('b', [10], initializer=tf.constant_initializer(0.0))
y_ = tf.matmul(x, w) + b
p_y = tf.nn.softmax(y_)
y_one_hot = tf.one_hot(y, 10, dtype=tf.float32)
loss = tf.reduce_mean(tf.square(y_one_hot - p_y))
predict = tf.argmax(y_,1)
correct_prediction = tf.equal(predict,y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
with tf.name_scope('train_op'):
train_op = tf.compat.v1.train.AdamOptimizer(1e-3).minimize(loss)
init = tf.compat.v1.global_variables_initializer()
batch_size = 20
train_steps = 50000
test_steps = 100
with tf.compat.v1.Session() as sess:
sess.run(init)
for i in range(train_steps):
batch_data, batch_labels = train_data.next_batch(batch_size)
loss_val, acc_val, _ = sess.run([loss, accuracy, train_op],feed_dict = {x: batch_data, y: batch_labels})
if i % 500 == 0:
print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' % (i, loss_val, acc_val))
if i % 5000 == 0:
test_data = CifarData(test_filenames, False)
all_test_acc_val = []
for j in range(test_steps):
test_batch_data, test_batch_labels = test_data.next_batch(batch_size)
test_acc_val = sess.run([accuracy], feed_dict = {x:test_batch_data, y:test_batch_labels})
all_test_acc_val.append(test_acc_val)
test_acc = np.mean(all_test_acc_val)
print('[Test] Step: %d, acc: %4.5f' % (i, test_acc))
这个单个是神经网络的代码