Let's call an array A a mountain if the following properties hold:
A.length >= 3- There exists some
0 < i < A.length - 1such thatA[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1]
Given an array that is definitely a mountain, return any i such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1].
Example 1:
Input: [0,1,0]
Output: 1
Example 2:
Input: [0,2,1,0]
Output: 1
Note:
3 <= A.length <= 100000 <= A[i] <= 10^6- A is a mountain, as defined above.
class Solution {
public int peakIndexInMountainArray(int[] A) {
int i;
for(i =0;i<A.length-1;i++){
if(A[i]<A[i+1]) continue;
else break;
}
return i;
}
}
初看这道题,觉得这道题简单的离谱。但是,上述代码的效果并不好。
Runtime: 3 ms, faster than 38.95% of Java online submissions for Peak Index in a Mountain Array.
这种直接的方法的时间复杂度为O(n)。那么有没有更快的算法呢?显然是有的。
折半查找(递归):
class Solution {
public int peakIndexInMountainArray(int[] A) {
return Middle(A,0,A.length -1);
}
public int Middle(int[] A, int left, int right){
int mid = (left+right)/2;
if(left != right){
if(A[mid] > A[mid+1])
return Middle(A,left,mid);
else
return Middle(A,mid+1,right);
}
else return mid;
}
}
时间复杂度为O(log(n))。
折半查找(非递归):
class Solution {
public int peakIndexInMountainArray(int[] A) {
int left = 0;
int right = A.length - 1;
while(left<right){
int mid = (left + right)/2;
if(A[mid]<A[mid+1])
left = mid+1;
else
right = mid;
}
return left;
}
}
这道题,看似简单,实际上,第一个想到折半查找的人并不多。
本文探讨了山形数组峰顶索引的快速查找算法,对比了线性搜索与折半查找两种方法。介绍了折半查找的递归与非递归实现,其时间复杂度从O(n)降低至O(log(n)),显著提升了效率。
516

被折叠的 条评论
为什么被折叠?



