可以直接复制,后面是常用算法,包括图论、数论、树论和常见的算法
注意:这部分请不要在csp/NOIP/NOI中使用
#pragma GCC optimize(3)
#pragma GCC target("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#pragma GCC optimize(2)
以下可以随意使用
#define re register
#define il inline
#define ls u<<1
#define rs u<<1|1
#define lowbit(x) (x&-x)
#define PII pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define clr(x) memset(x,0,sizeof(x))
#define ll long long
#define ld long double
#define pi acos(-1.0)
#define il inline
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin),p1==p2)?0:*p1++)
char buf[1<<20],*p1,*p2;
template <typename T>
il void read(T &x)
{
x=0;int f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
x*=f;
}
template <typename T>
il void write(T x)
{
if(x<0) putchar('-'),x=~x+1;
if(x>9) write(x/10);
putchar(x%10^48);
}
il char getc()
{
char ch=getchar();
while(ch=='\n'||ch=='\r'||ch==' ') ch=getchar();
return ch;
}
int n,m,dis[N][N];
void Floyd()
{
read(n),read(m);
memset(dis,0x3f,sizeof dis);
for(int i=1;i<=n;i++) dis[i][i]=0;
for(int i=1,u,v,w;i<=m;i++)
{
read(u),read(v),read(w);
dis[u][v]=dis[v][u]=min(dis[u][v],w);
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i^j&&i^k&&j^k&&dis[i][k])
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
// 无优化
int n,m,s,dis[N];
bool vis[N];
struct Edge
{
int v,w;
};
vector<Edge> g[N];
void Dijkstra(int s)
{
for(int i=1;i<=n;i++) dis[i]=INF;
dis[s]=0;
for(int i=1;i<n;i++)
{
int mindis=INF,u;
for(int j=1;j<=n;j++)
if(!vis[j]&&mindis>dis[j])
mindis=dis[j],u=j;
vis[u]=1;
for(auto [v,w]:g[u])
if(!vis[v]&&dis[v]>mindis+w)
dis[v]=mindis+w;
}
}
// 堆优化
int n,m,s,dis[N];
bool vis[N];
priority_queue<PII,vector<PII>,greater<PII>> q;
struct Edge
{
int v,w;
};
vector<Edge> g[N];
void Dijkstra(int s)
{
memset(dis,0x3f,sizeof(dis));
dis[s]=0,q.push(mp(0,s));
while(!q.empty())
{
int u=q.top().se;q.pop();
if(vis[u]) continue;
vis[u]=1;
for(auto [v,w]:g[u])
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v]) q.push(mp(dis[v],v));
}
}
}
int n,m,dis[N];
struct Edge
{
int u,v,w;
};
vector<Edge> e;
bool Bellman_Ford(int s)
{
memset(dis,0x3f,sizeof(dis));
dis[s]=0;
bool flag=false;
for(int i=1;i<=n;i++)
{
flag=false;
for(auto [u,v,w]:e)
{
if(dis[u]==INF) continue;
if(dis[v]>dis[u]+w)
dis[v]=dis[u]+w,flag=true;
}
if(!flag) break;
}
return flag;
}
int n,m,dis[N],cnt[N];
bool vis[N];
struct Edge
{
int v,w;
};
vector<Edge> g[N];
queue<int> q;
bool SPFA(int s)
{
memset(dis,0x3f,sizeof(dis));
dis[s]=0,vis[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop(),vis[u]=0;
for(auto [v,w]:g[u])
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
cnt[v]=cnt[u]+1;
if(cnt[v]>=n) return false;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
return true;
}
int n,m,dis[N],cnt[N];
bool vis[N];
struct Edge
{
int v,w;
};
vector<Edge> g[N];
queue<int> q;
bool SPFA(int s)
{
memset(dis,0x3f,sizeof(dis));
dis[s]=0,vis[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop(),vis[u]=0;
for(auto [v,w]:g[u])
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
cnt[v]=cnt[u]+1;
if(cnt[v]>=n) return false;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
return true;
}
int n,m,fa[N];
struct Edge
{
int u,v,w;
}e[M];
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
void Kruskal()
{
int mst=0,tot=0;
for(int i=1;i<=n;i++) fa[i]=i;
sort(e+1,e+1+m,[](Edge a,Edge b){return a.w<b.w;});
for(int i=1;i<=m;i++)
{
int x=find(e[i].u),y=find(e[i].v);
if(x==y) continue;
fa[x]=y,mst+=e[i].w;
if(++tot==n-1) break;
}
printf("%d",mst);
}
int n,m,dis[N];
bool vis[N];
struct Edge
{
int v,w;
};
vector<Edge> e[M];
void Prim()
{
int u=1,tot=1,mst=0;
memset(dis,0x3f,sizeof(dis));
while(tot<n)
{
for(auto [v,w]:g[u])
if(!vis[v]&&dis[v]>w) dis[v]=w;
int mindis=INF;
++tot,vis[u]=1;
for(int i=1;i<=n;i++)
if(!vis[i]&&mindis>dis[i])
u=i,mindis=dis[i];
mst+=mindis;
}
printf("%d",mst);
}
int n,m,s,dis[N];
bool vis[N];
priority_queue<PII,vector<PII>,greater<PII>> q;
struct Edge
{
int v,w;
};
vector<Edge> g[N];
void Prim()
{
int mst=0,tot=0;
memset(dis,0x3f,sizeof(dis));
dis[1]=0,q.push(mp(0,1));
while(!q.empty()&&tot<n)
{
int u=q.top().se;
if(vis[u]) continue;
++tot,mst+=q.top().fi;
vis[u]=1,q.pop();
for(auto [v,w]:g[u])
if(dis[v]>w)
dis[v]=w,q.push(mp(dis[v],v));
}
printf("%d",mst);
}
int n,m,f[N][21],dep[N];
vector<int> g[N];
void dfs(int u,int fa)
{
f[u][0]=fa,dep[u]=dep[fa]+1;
for(int i=1;i<=19;i++)
f[u][i]=f[f[u][i-1]][i-1];
for(auto v:g[u])
if(v^fa) dfs(v,u);
}
int LCA(int u,int v)
{
if(dep[u]<dep[v]) swap(u,v);
for(int i=19;~i;i--)
if(dep[u]-dep[v]>=(1<<i)) u=f[u][i];
if(u==v) return u;
for(int i=19;~i;i--)
if(f[u][i]^f[v][i])
u=f[u][i],v=f[v][i];
return f[v][0];
}
int n,m,fa[N],dep[N],siz[N],hs[N];
vector<int> g[N];
void dfs1(int u,int fath)
{
fa[u]=fath,dep[u]=dep[fath]+1;
siz[u]=1,hs[u]=-1;
for(auto v:g[u])
{
if(v==fath) continue;
dfs1(v,u),siz[u]+=siz[v];
if(hs[u]==-1||siz[v]>siz[hs[u]]) hs[u]=v;
}
}
int top[N];
void dfs2(int u,int t)
{
top[u]=t;
if(~hs[u]) dfs2(hs[u],t);
for(auto v:g[u])
if(v^fa[u]&&hs[u]^v) dfs2(v,v);
}
int LCA(int u,int v)
{
while(top[u]^top[v])
{
if(dep[top[u]]<dep[top[v]]) swap(u,v);
u=fa[top[u]];
}
if(dep[u]<dep[v]) swap(u,v);
return v;
}
int n,m,st[N][21],dfn[N],cnt;
vector<int> g[N];
int get(int x,int y)
{
return dfn[x]<dfn[y]?x:y;
}
void dfs(int u,int fa)
{
st[dfn[u]=++cnt][0]=fa;
for(auto v:g[u])
if(v^fa) dfs(v,u);
}
int LOG[N];
void st_init()
{
LOG[0]=-1;
for(int i=1;i<=n;i++) LOG[i]=LOG[i>>1]+1;
int p=LOG[n];
for(int k=1;k<=p;k++)
for(int s=1;s+(1<<k)<=n+1;s++)
st[s][k]=get(st[s][k-1],st[s+(1<<(k-1))][k-1]);
}
int LCA(int u,int v)
{
if(u==v) return u;
u=dfn[u],v=dfn[v];
if(u>v) swap(u,v);
int k=LOG[v-u];
return get(st[u+1][k],st[v-(1<<k)+1][k]);
}
// 高精度
// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
if (A.size() < B.size()) return add(B, A);
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i ++ )
{
t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t) C.push_back(t);
return C;
}
// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
for (int i = 0, t = 0; i < A.size(); i ++ )
{
t = A[i] - t;
if (i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if (t < 0) t = 1;
else t = 0;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || t; i ++ )
{
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
vector<int> C;
r = 0;
for (int i = A.size() - 1; i >= 0; i -- )
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
// 求n的第k位数字: n >> k & 1
// 返回n的最后一位1:lowbit(n) = n & -n
// shuangzhizhen
for (int i = 0, j = 0; i < n; i ++ )
{
while (j < i && check(i, j)) j ++ ;
// 具体问题的逻辑
}
常见问题分类:
(1) 对于一个序列,用两个指针维护一段区间
(2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作
vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素
// 二分求出x对应的离散化的值
int find(int x) // 找到第一个大于等于x的位置
{
int l = 0, r = alls.size() - 1;
while (l < r)
{
int mid = l + r >> 1;
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1; // 映射到1, 2, ...n
}
// 将所有存在交集的区间合并
void merge(vector<PII> &segs)
{
vector<PII> res;
sort(segs.begin(), segs.end());
int st = -2e9, ed = -2e9;
for (auto seg : segs)
if (ed < seg.first)
{
if (st != -2e9) res.push_back({st, ed});
st = seg.first, ed = seg.second;
}
else ed = max(ed, seg.second);
if (st != -2e9) res.push_back({st, ed});
segs = res;
}
// 扩展欧几里得算法 (ax + by = gcd(a,b))
ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b) { x = 1; y = 0; return a; }
ll d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
// 逆元 (a^{-1} mod p)
ll inv(ll a, ll p = MOD)
{
ll x, y;
exgcd(a, p, x, y);
return (x % p + p) % p;
}
ll fac[N], inv_fac[N];
// 组合数计算 (预处理阶乘和逆元)
void init (int n = 1e5)
{
fac[0] = 1;
REP1(i, n) fac[i] = fac[i - 1] * i % MOD;
inv_fac[n] = inv(fac[n], MOD);
FORD(i, n, 1) inv_fac[i - 1] = inv_fac[i] * i % MOD;
}
ll C(int n, int k)
{
if (k < 0 || k > n) return 0;
return fac[n] * inv_fac[k] % MOD * inv_fac[n - k] % MOD;
}
4335

被折叠的 条评论
为什么被折叠?



