| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 7424 | Accepted: 3100 |
Description
You are given N weighted open intervals. The ith interval covers (ai, bi) and weighs wi. Your task is to pick some of the intervals to maximize the total weights under the limit that no point in the real axis is covered more than k times.
Input
The first line of input is the number of test case.
The first line of each test case contains two integers, N and K (1 ≤
K ≤ N ≤ 200).
The next N line each contain three integers ai,
bi, wi(1 ≤
ai < bi ≤ 100,000, 1 ≤
wi ≤ 100,000) describing the intervals.
There is a blank line before each test case.
Output
For each test case output the maximum total weights in a separate line.
Sample Input
4 3 1 1 2 2 2 3 4 3 4 8 3 1 1 3 2 2 3 4 3 4 8 3 1 1 100000 100000 1 2 3 100 200 300 3 2 1 100000 100000 1 150 301 100 200 300
Sample Output
14 12 100000 100301
Source
【题目分析】
一看到巨大的ai,bi和超级小的n,k就知道有必要进行离散化(就是因为离散化出错,RE了好多遍,有可能并没有重复,需要特判一下)。然后就不会做了,关键是每一个点覆盖不能超过k次,用网络流的方法确实是很巧妙的,加入(S,1,k,0)(T-1 ,T ,k ,0 )(ai,bi,1,-wi)(i,i+1,k,0)如果一个区间被选择,那么这个区间可能通过的流量就减去了1(S点出来的流量为k,那么最大流就是k)然后就轻而易举的解决了。
【代码】
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
using namespace std;
const int inf =0x3f3f3f3f;
const int maxn=10010;
const int maxm=10010;
#define M(a) memset(a,-1,sizeof a)
#define M0(a) memset(a,0,sizeof a)
#define MB(a) memset(a,0x3f,sizeof a)
int n,m,S,T,ans,en=0;
int v[maxn],u[maxn],cost[maxn],f[maxn],h[maxn],ne[maxn];
bool vis[maxm];//u->v
int l[maxn],r[maxn],w[maxn],ss[maxn];
int dis[maxm],with[maxm],minn[maxm];
inline void add(int a,int b,int r,int c)
{
u[en]=a;v[en]=b;ne[en]=h[a];f[en]=r;cost[en]=c; h[a]=en++;
u[en]=b;v[en]=a;ne[en]=h[b];f[en]=0;cost[en]=-c;h[b]=en++;
}
inline bool tell()
{
queue<int>q;
M0(vis);MB(dis);MB(minn);M0(with);
q.push(S);vis[S]=true;dis[S]=0;
while (!q.empty())
{
int x=q.front();q.pop();vis[x]=false;
for (int i=h[x];i!=-1;i=ne[i])
{
int y=v[i];
if (dis[y]>dis[x]+cost[i]&&f[i]>0)
{
dis[y]=dis[x]+cost[i];
minn[y]=min(minn[x],f[i]);
with[y]=i;
if (!vis[y]) vis[y]=1,q.push(y);
}
}
}
if (dis[T]==0x3f3f3f3f) return false;
return true;
}
inline int zeng()
{
for (int i=T;i!=S;i=v[with[i]^1])
{
f[with[i]]-=minn[T];
f[with[i]^1]+=minn[T];
}
return minn[T]*dis[T];
}
inline void solve()
{
M(v);M(u);M(h);M(ne);
int n,k;
scanf("%d%d",&n,&k);
S=0;en=0;ans=0;
for (int i=1;i<=n;++i){
scanf("%d%d%d",&l[i],&r[i],&w[i]);
ss[i*2-1]=l[i];
ss[i*2]=r[i];
}
sort(ss+1,ss+2*n+1);
for (int i=2*n;i>1;--i) if (ss[i]==ss[i-1]) ss[i]=inf;
sort(ss+1,ss+2*n+1);
int flag=0;
for (int i=1;i<=2*n;i++)
{
if (ss[i]==inf) {T=i+1;flag=1;break;}
}
if (!flag) T=2*n+1;
for (int i=1;i<T;++i)add(i,i+1,k,0);
for (int i=1;i<=n;++i){
for (int j=1;j<T;++j) if (l[i]==ss[j]) {l[i]=j;break;}
for (int j=1;j<T;++j) if (r[i]==ss[j]) {r[i]=j;break;}
}
for (int i=1;i<=n;++i){
add(l[i],r[i],1,-w[i]);
}
add(S,1,k,0);
add(T-1,T,k,0);
while (tell()) ans-=zeng();
printf("%d\n",ans);
}
int main()
{
int tt=0;
scanf("%d",&tt);
for (int z=1;z<=tt;++z) solve();
}
本文介绍了一种使用网络流算法解决区间覆盖问题的方法,旨在选取一系列权重最高的开放区间,同时确保每个点被覆盖次数不超过限定值。通过离散化处理和网络流优化策略实现了高效的求解。
2180

被折叠的 条评论
为什么被折叠?



