pandas中报错:TypeError: reduction operation ‘argmax‘ not allowed for this dtype 的解决办法

本文介绍了在处理数据时遇到的TypeError:argmax操作不适用于object类型的数据列。解决方法是将该列转换为适当的数据类型,以允许执行argmax操作。通过理解数据类型和转换技巧,可以避免此类问题并确保数据分析的顺利进行。

报错分析


在这里插入图片描述
TypeError: reduction operation ‘argmax’ not allowed for this dtype(类型错误:此数据类型不允许还原操作“argmax”)

报错中显示的是数据类型的错误,因此我们需要知道我们的数据的类型有哪些:
在这里插入图片描述

解决过程

将为对象(object)的那一列修改类型即可
在这里插入图片描述

-------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[131], line 76 73 return key_pollutants 75 print("\n关键污染物评估:") ---> 76 print(evaluate_key_pollutants(stage_changes, sig_results)) Cell In[131], line 67, in evaluate_key_pollutants(stage_changes, sig_results) 65 for stage in stage_changes.index: 66 significant = [p for p in stage_changes.columns if sig_results[stage][p]['p'] < 0.05] ---> 67 max_pollutant = stage_changes.loc[stage, significant].abs().idxmax() 68 key_pollutants[stage] = { 69 '主导污染物': max_pollutant, 70 '变化幅度': f"{stage_changes.loc[stage, max_pollutant]:.1f}%", 71 'p值': f"{sig_results[stage][max_pollutant]['p']:.4f}" 72 } 73 return key_pollutants File D:\Anaconda\lib\site-packages\pandas\core\series.py:2564, in Series.idxmax(self, axis, skipna, *args, **kwargs) 2500 def idxmax(self, axis: Axis = 0, skipna: bool = True, *args, **kwargs) -> Hashable: 2501 """ 2502 Return the row label of the maximum value. 2503 (...) 2562 nan 2563 """ -> 2564 i = self.argmax(axis, skipna, *args, **kwargs) 2565 if i == -1: 2566 return np.nan File D:\Anaconda\lib\site-packages\pandas\core\base.py:655, in IndexOpsMixin.argmax(self, axis, skipna, *args, **kwargs) 651 return delegate.argmax() 652 else: 653 # error: Incompatible return value type (got "Union[int, ndarray]", expected 654 # "int") --> 655 return nanops.nanargmax( # type: ignore[return-value] 656 delegate, skipna=skipna 657 ) File D:\Anaconda\lib\site-packages\pandas\core\nanops.py:88, in disallow.__call__.<locals>._f(*args, **kwargs) 86 if any(self.check(obj) for obj in obj_iter): 87 f_name = f.__name__.replace("nan", "") ---> 88 raise TypeError( 89 f"reduction operation '{f_name}' not allowed for this dtype" 90 ) 91 try: 92 with np.errstate(invalid="ignore"): TypeError: reduction operation 'argmax' not allowed for this dtype
最新发布
08-24
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[19], line 18 15 bic_matrix.append(tmp) 17 bic_matrix = pd.DataFrame(bic_matrix) # 从中可以找出最小值 ---> 18 p,q = bic_matrix.stack().idxmin() # 先用stack展平,然后用idxmin找出最小值位置。 19 print(bic_matrix) 20 print('BIC最小的p值和q值为:',(p,q)) File D:\Anaconda3\envs\tf_2.0\lib\site-packages\pandas\core\series.py:2460, in Series.idxmin(self, axis, skipna, *args, **kwargs) 2396 """ 2397 Return the row label of the minimum value. 2398 (...) 2456 nan 2457 """ 2458 # error: Argument 1 to "argmin" of "IndexOpsMixin" has incompatible type "Union 2459 # [int, Literal['index', 'columns']]"; expected "Optional[int]" -> 2460 i = self.argmin(axis, skipna, *args, **kwargs) # type: ignore[arg-type] 2461 if i == -1: 2462 return np.nan File D:\Anaconda3\envs\tf_2.0\lib\site-packages\pandas\core\base.py:742, in IndexOpsMixin.argmin(self, axis, skipna, *args, **kwargs) 738 return delegate.argmin() 739 else: 740 # error: Incompatible return value type (got "Union[int, ndarray]", expected 741 # "int") --> 742 return nanops.nanargmin( # type: ignore[return-value] 743 delegate, skipna=skipna 744 ) File D:\Anaconda3\envs\tf_2.0\lib\site-packages\pandas\core\nanops.py:91, in disallow.__call__.<locals>._f(*args, **kwargs) 89 if any(self.check(obj) for obj in obj_iter): 90 f_name = f.__name__.replace("nan", "") ---> 91 raise TypeError( 92 f"reduction operation '{f_name}' not allowed for this dtype" 93 ) 94 try: 95 with np.errstate(invalid="ignore"): TypeError: reduction operation 'argmin' not allowed for this dtyp
06-03
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

街 三 仔

你的鼓励是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值