AU 简单混音模板,用于AI换声,简单记录

文章介绍了使用AI技术进行声音变换的过程中,如何运用多频段压缩器控制高频噪声,通过自适应降噪和消除齿音减少杂音,以及人声增强提升声音品质。同时,提到了调整人声和伴奏音量的比例以达到理想混音效果。

玩AI换声,记录一下快速入门学到的混音经验

混音成品:【AI绫华/RVC2.0】星之所在 https://www.bilibili.com/video/BV1Ao4y1K7P9

在这里插入图片描述

人声轨效果器

  1. 多频段压缩器
    主要用来控制高频的刺刺声
    在这里插入图片描述
  2. 回声
    主要用来使声音更加饱满
    在这里插入图片描述
  3. 自适应降噪
    减少毛毛躁躁的噪音,使用默认参数
    在这里插入图片描述
  4. 消除齿音
    也是用来消除高频的刺刺声
    参考设置
    在这里插入图片描述
  5. 自动咔哒声移除
    不知道有什么用,用的是默认参数
    在这里插入图片描述
  6. 人声增强
    使人声更加明亮,按人声特点选择,清脆的声音用高音,低沉的用低音
    在这里插入图片描述
  7. 室内混音
    对混音效果影响很大,但不知道怎么改,目前按这个来。
    在这里插入图片描述

伴奏轨效果器

后面

调整人声音量和伴奏音量,使伴奏音量为人声的2/3或3/5的幅度
根据自己感觉,继续微调效果器

导出

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值