LinkedBlockingQueue学习笔记

今天剖析学习了LinkedBlockingQueue,总结下笔记
我们从类注释上大概可以得到如下信息:
1.基于链表的阻塞队列,其底层的数据结构是链表;
2.链表维护先入先出队列,新元素被放在队尾,获取元素从队头部拿;
3.链表大小在初始化的时候可以设置,默认是 Integer 的最大值;
4.可以使用 Collection 和 Iterator 两个接口的所有操作,因为实现了两者的接口。

LinkedBlockingQueue 内部构成简单来说,分成三个部分:链表存储 + 锁 + 迭代器,我们来看下源码。

static class Node<E> {
        E item;

        /**
         * One of:
         * - the real successor Node
         * - this Node, meaning the successor is head.next
         * - null, meaning there is no successor (this is the last node)
         */
        Node<E> next;

        Node(E x) { item = x; }
    }

    /** The capacity bound, or Integer.MAX_VALUE if none */
    private final int capacity;

    /** Current number of elements */
    private final AtomicInteger count = new AtomicInteger();

    /**
     * Head of linked list.
     * Invariant: head.item == null
     */
    transient Node<E> head;

    /**
     * Tail of linked list.
     * Invariant: last.next == null
     */
    private transient Node<E> last;

    /** Lock held by take, poll, etc */
    private final ReentrantLock takeLock = new ReentrantLock();

    /** Wait queue for waiting takes */
    private final Condition notEmpty = takeLock.newCondition();

    /** Lock held by put, offer, etc */
    private final ReentrantLock putLock = new ReentrantLock();

    /** Wait queue for waiting puts */
    private final Condition notFull = putLock.newCondition();
   
  

锁有 take 锁和 put 锁,是为了保证队列操作时的线程安全,设计两种锁,是为了 take 和 put 两种操作可以同时进行,互不影响。

初始化
1.指定链表容量大小;
2.不指定链表容量大小,默认是 Integer 的最大值;
3.对已有集合数据进行初始化。

public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }

    /**
     * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
     *
     * @param capacity the capacity of this queue
     * @throws IllegalArgumentException if {@code capacity} is not greater
     *         than zero
     */
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

    /**
     * Creates a {@code LinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}, initially containing the elements of the
     * given collection,
     * added in traversal order of the collection's iterator.
     *
     * @param c the collection of elements to initially contain
     * @throws NullPointerException if the specified collection or any
     *         of its elements are null
     */
    public LinkedBlockingQueue(Collection<? extends E> c) {
        this(Integer.MAX_VALUE);
        final ReentrantLock putLock = this.putLock;
        putLock.lock(); // Never contended, but necessary for visibility
        try {
            int n = 0;
            for (E e : c) {
                if (e == null)
                    throw new NullPointerException();
                if (n == capacity)
                    throw new IllegalStateException("Queue full");
                enqueue(new Node<E>(e));
                ++n;
            }
            count.set(n);
        } finally {
            putLock.unlock();
        }
    }

初始化时,容量大小是不会影响性能的,只影响在后面的使用,因为初始化队列太小,容易导致没有放多少就会报队列已满的错误

阻塞新增
我们拿 put 方法为例,put 方法在碰到队列满的时候,会一直阻塞下去,直到队列不满时,并且自己被唤醒时,才会继续去执行,源码如下:

 public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        // Note: convention in all put/take/etc is to preset local var
        // holding count negative to indicate failure unless set.
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            /*
             * Note that count is used in wait guard even though it is
             * not protected by lock. This works because count can
             * only decrease at this point (all other puts are shut
             * out by lock), and we (or some other waiting put) are
             * signalled if it ever changes from capacity. Similarly
             * for all other uses of count in other wait guards.
             */
            while (count.get() == capacity) {
                notFull.await();
            }
            enqueue(node);
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
    }

1.往队列新增数据,第一步是上锁,所以新增数据是线程安全的;
队列新增数据,简单的追加到链表的尾部即可;
2.新增时,如果队列满了,当前线程是会被阻塞的,阻塞的底层使用是锁的能力,底层实现其它也和队列相关,原理我们在锁章节会说到;
3.新增数据成功后,在适当时机,会唤起 put 的等待线程(队列不满时),或者 take 的等待线程(队列不为空时),这样保证队列一旦4.满足 put 或者 take 条件时,立马就能唤起阻塞线程,继续运行,保证了唤起的时机不被浪费。

offer方法

  public boolean offer(E e, long timeout, TimeUnit unit)
        throws InterruptedException {

        if (e == null) throw new NullPointerException();
        long nanos = unit.toNanos(timeout);
        int c = -1;
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            while (count.get() == capacity) {
                if (nanos <= 0)
                    return false;
                nanos = notFull.awaitNanos(nanos);
            }
            enqueue(new Node<E>(e));
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
        return true;
    }

offer 方法阻塞超过一端时间后,仍未成功,就会直接返回默认值的实现,和 put 方法相比只修改了几行代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值