一、动态规划理论基础
基本定义
动态规划,Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,
例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。
但贪心每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。所以贪心解决不了动态规划的问题。
解题步骤
状态转移公式(递推公式)是很重要,但动规不仅仅只有递推公式。对于动态规划问题,拆解为如下五步
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
动态规划应该如何debug
写动规题目,代码出问题很正常。找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的。做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。
然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。
如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。
发出问题之前,其实可以自己先思考这三个问题:
- 这道题目我举例推导状态转移公式了么?
- 我打印dp数组的日志了么?
- 打印出来了dp数组和我想的一样么?
如果这灵魂三问自己都做到了,基本上这道题目也就解决了,或者更清晰的知道自己究竟是哪一点不明白,是状态转移不明白,还是实现代码不知道该怎么写,还是不理解遍历dp数组的顺序。
二、题目
1、斐波那契数
动态规划
动规五部曲:
这里我们要用一个一维dp数组来保存递归的结果
- 确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
- 确定递推公式
递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
- dp数组如何初始化
如何初始化也直接给我们了,如下:
dp[0] = 0;
dp[1] = 1;
- 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
- 举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
vector<int> dp(N + 1);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[N];
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(n)
只需要维护两个数值就可以了,不需要记录整个序列。
代码如下:
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
int dp[2];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return dp[1];
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)
递归解法
本题还可以使用递归解法来做
代码如下:
class Solution {
public:
int fib(int N) {
if (N < 2) return N;
return fib(N - 1) + fib(N - 2);
}
};
- 时间复杂度:O(2^n)
- 空间复杂度:O(n),算上了编程语言中实现递归的系统栈所占空间
2、爬楼梯
爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。
定义一个一维数组来记录不同楼层的状态
- 确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
- 确定递推公式
从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和。dp[i] = dp[i - 1] + dp[i - 2] 。
- dp数组如何初始化
不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。
- 确定遍历顺序
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
- 举例推导dp数组
举例当n为5的时候,dp table(dp数组)应该是这样的
以上五部分析完之后,C++代码如下:
// 版本一
class Solution {
public:
int climbStairs(int n) {
if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
vector<int> dp(n + 1);
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) { // 注意i是从3开始的
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
};
- 时间复杂度:$O(n)$
- 空间复杂度:$O(n)$
3、使用最小花费爬楼梯
题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。
- 确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。
- 确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
- dp数组如何初始化
看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。
初始化 dp[0] = 0,dp[1] = 0;
- 确定遍历顺序
因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。
- 举例推导dp数组
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:
代码如下:
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size() + 1);
dp[0] = 0; // 默认第一步都是不花费体力的
dp[1] = 0;
for (int i = 2; i <= cost.size(); i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(n)