题目地址
https://codeforces.com/problemset/problem/1838/C
题目抽象
将 [ 1 , n ⋅ m ] [1, n \cdot m] [1,n⋅m] 的数字排列进 n * m 的矩阵中,使得任意相邻的数字之差都不是质数
数据范围:
4
≤
n
,
m
≤
1000
4\le n,m \le 1000
4≤n,m≤1000
题目类型
构造
解题思路
我们先按最简单的来看,将他们顺序排列,可以得到:
1 1 1 | 2 2 2 | ⋯ \cdots ⋯ | m m m |
---|---|---|---|
m + 1 m+1 m+1 | m + 2 m+2 m+2 | ⋯ \cdots ⋯ | 2 ⋅ m 2\cdot m 2⋅m |
2 ⋅ m + 1 2\cdot m+1 2⋅m+1 | 2 ⋅ m + 2 2\cdot m+2 2⋅m+2 | ⋯ \cdots ⋯ | 3 ⋅ m 3\cdot m 3⋅m |
⋮ \vdots ⋮ | ⋮ \vdots ⋮ | ⋱ \ddots ⋱ | ⋮ \vdots ⋮ |
( n − 1 ) ⋅ m + 1 (n-1)\cdot m+1 (n−1)⋅m+1 | ( n − 1 ) ⋅ m + 2 (n-1)\cdot m+2 (n−1)⋅m+2 | ⋯ \cdots ⋯ | n ⋅ m n\cdot m n⋅m |
左右相邻的相差 1 1 1,不是质数,上下相邻的都相差 m m m,如果 m m m 不是质数,那么就是答案
而如果 m m m 是质数,我们交换一下行列,原偶数行和奇数行都放在一起,使得他们的差为 k ⋅ m , k ≥ 2 k \cdot m, k \ge 2 k⋅m,k≥2,那就一定不是质数了
1 1 1 | 2 2 2 | ⋯ \cdots ⋯ | m m m |
---|---|---|---|
2 ⋅ m + 1 2\cdot m+1 2⋅m+1 | 2 ⋅ m + 2 2\cdot m+2 2⋅m+2 | ⋯ \cdots ⋯ | 3 ⋅ m 3\cdot m 3⋅m |
4 ⋅ m + 1 4\cdot m+1 4⋅m+1 | 4 ⋅ m + 2 4\cdot m+2 4⋅m+2 | ⋯ \cdots ⋯ | 5 ⋅ m 5\cdot m 5⋅m |
⋮ \vdots ⋮ | ⋮ \vdots ⋮ | ⋱ \ddots ⋱ | ⋮ \vdots ⋮ |
( n − 1 ) ⋅ m + 1 (n-1)\cdot m+1 (n−1)⋅m+1 | ( n − 1 ) ⋅ m + 2 (n-1)\cdot m+2 (n−1)⋅m+2 | ⋯ \cdots ⋯ | n ⋅ m n\cdot m n⋅m |
m + 1 m+1 m+1 | m + 2 m+2 m+2 | ⋯ \cdots ⋯ | 2 ⋅ m 2\cdot m 2⋅m |
3 ⋅ m + 1 3\cdot m+1 3⋅m+1 | 3 ⋅ m + 2 3\cdot m+2 3⋅m+2 | ⋯ \cdots ⋯ | 4 ⋅ m 4\cdot m 4⋅m |
⋮ \vdots ⋮ | ⋮ \vdots ⋮ | ⋱ \ddots ⋱ | ⋮ \vdots ⋮ |
( n − 2 ) ⋅ m + 1 (n-2)\cdot m+1 (n−2)⋅m+1 | ( n − 2 ) ⋅ m + 2 (n-2)\cdot m+2 (n−2)⋅m+2 | ⋯ \cdots ⋯ | ( n − 1 ) ⋅ m (n-1)\cdot m (n−1)⋅m |
代码
#include <bits/stdc++.h>
using namespace std;
int n, m;
void solve() {
cin >> n >> m;
if (m & 1 ^ 1) {
for (int i = 1; i <= n; i ++) {
for (int j = 1; j <= m; j ++) {
cout << j + (i - 1) * m << ' ';
}
cout << endl;
}
} else if (n & 1 ^ 1) {
for (int i = 1; i <= n; i ++) {
for (int j = 1; j <= m; j ++) {
cout << i + (j - 1) * n << ' ';
}
cout << endl;
}
} else {
for (int i = 1; i <= n; i += 2) {
for (int j = 1; j <= m; j ++) {
cout << j + (i - 1) * m << ' ';
}
cout << endl;
}
for (int i = 2; i <= n; i += 2) {
for (int j = 1; j <= m; j ++) {
cout << j + (i - 1) * m << ' ';
}
cout << endl;
}
}
}
int main() {
int T; cin >> T; while (T--) solve();
}