写在前面,
这是我读其他人的文章写下的笔记,第一版和原文几乎相同。侵联删,
后续我也会加入我在其他地方学到的相关的东西,也就是说,这是我自己的一个学习笔记。
当然了,既然是学习笔记,除了链接原文外肯定还有其他内容
原文链接:https://www.runoob.com/w3cnote/c-volatile-keyword.html
https://github.com/Light-City/CPlusPlusThings/tree/master/basic_content/volatile
1、 volatile是什么?
C/C++ 中的 volatile 关键字和 const 对应,用来修饰变量,通常用于建立语言级别的 memory barrier。这是 BS 在 “The C++ Programming Language” 对 volatile 修饰词的说明:
A volatile specifier is a hint to a compiler that an object may change its value in ways not specified by the language so that aggressive optimizations must be avoided.
volatile 关键字是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素更改,比如:操作系统、硬件或者其它线程等。遇到这个关键字声明的变量,编译器对访问该变量的代码就不再进行优化,从而可以提供对特殊地址的稳定访问。声明时语法:int volatile vInt; 当要求使用 volatile 声明的变量的值的时候,系统总是重新从它所在的内存读取数据,即使它前面的指令刚刚从该处读取过数据。而且读取的数据立刻被保存。例如:
volatile int i=10;
int a = i;
...
// 其他代码,并未明确告诉编译器,对 i 进行过操作
int b = i;
volatile 指出 i 是随时可能发生变化的,每次使用它的时候必须从 i的地址中读取,因而编译器生成的汇编代码会重新从i的地址读取数据放在 b 中。而优化做法是,由于编译器发现两次从 i读数据的代码之间的代码没有对 i 进行过操作,它会自动把上次读的数据放在 b 中。而不是重新从 i 里面读。这样以来,如果 i是一个寄存器变量或者表示一个端口数据就容易出错,所以说 volatile 可以保证对特殊地址的稳定访问。下面通过插入汇编代码,测试有无 volatile 关键字,对程序最终代码的影响,输入下面的代码:
#include <stdio.h>
void main()
{
int i = 10;
int a = i;
printf("i = %d", a);
// 下面汇编语句的作用就是改变内存中 i 的值
// 但是又不让编译器知道
__asm {
mov dword ptr [ebp-4], 20h
}
int b = i;
printf("i = %d", b);
}
然后,在 Debug 版本模式运行程序,输出结果如下:
i = 10
i = 32
然后,在 Release 版本模式运行程序,输出结果如下:
i = 10
i = 10
#include <stdio.h>
void main()
{
volatile int i = 10;
int a = i;
printf("i = %d", a);
__asm {
mov dword ptr [ebp-4], 20h
}
int b = i;
printf("i = %d", b);
}
分别在 Debug 和 Release 版本运行程序,输出都是:
i = 10
i = 32
这说明这个 volatile 关键字发挥了它的作用。
2、Volatile的用途
其实不只是内嵌汇编操纵栈"这种方式属于编译无法识别的变量改变,另外更多的可能是多线程并发访问共享变量时,一个线程改变了变量的值,怎样让改变后的值对其它线程 visible。一般说来,volatile用在如下的几个地方:
1) 并行设备的硬件寄存器(如状态寄存器)。
假设要对一个设备进行初始化,此设备的某一个寄存器为0xff800000;
int *output = (unsigned int *)0xff800000; //定义一个IO端口;
int init(void)
{
int i;
for(i=0;i< 10;i++)
{
*output = i;
}
}
经过编译器优化后,编译器认为前面循环半天都是废话,对最后的结果毫无影响,因为最终只是将output这个指针赋值为 9,所以编译器最后给你编译编译的代码结果相当于:
int init(void)
{
*output = 9;
}
如果你对此外部设备进行初始化的过程是必须是像上面代码一样顺序的对其赋值,显然优化过程并不能达到目的。反之如果你不是对此端口反复写操作,而是反复读操作,其结果是一样的,编译器在优化后,也许你的代码对此地址的读操作只做了一次。然而从代码角度看是没有任何问题的。这时候就该使用volatile通知编译器这个变量是一个不稳定的,在遇到此变量时候不要优化。
即:存储器映射的硬件寄存器通常也要加 volatile 说明,因为每次对它的读写都可能由不同意义
2) 中断服务程序中修改的供其它程序检测的变量需要加 volatile;
static int i=0;
int main()
{
while(1)
{
if(i) dosomething();
}
}
/* Interrupt service routine */
void IRS()
{
i=1;
}
上面示例程序的本意是产生中断时,由中断服务子程序IRS响应中断,变更程序变量i,使在main函数中调用dosomething函数,但是,由于编译器判断在main函数里面没有修改过i,因此可能只执行一次对从i到某寄存器的读操作,然后每次if判断都只使用这个寄存器里面的“i副本”,导致dosomething永远不会被调用。如果将变量i加上volatile修饰,则编译器保证对变量i的读写操作都不会被优化,从而保证了变量i被外部程序更改后能及时在原程序中得到感知。
3) 多任务环境下各任务间共享的标志应该加 volatile;
多线程应用中被多个任务共享的变量。 当多个线程共享某一个变量时,该变量的值会被某一个线程更改,应该用 volatile 声明。
作用是防止编译器优化把变量从内存装入CPU寄存器中,当一个线程更改变量后,未及时同步到其它线程中导致程序出错。
volatile的意思是让编译器每次操作该变量时一定要从内存中真正取出,而不是使用已经存在寄存器中的值。示例如下:
volatile bool bStop=false; //bStop 为共享全局变量
//第一个线程
void threadFunc1()
{
...
while(!bStop){...}
}
//第二个线程终止上面的线程循环
void threadFunc2()
{
...
bStop = true;
}
要想通过第二个线程终止第一个线程循环,如果bStop不使用volatile定义,那么这个循环将是一个死循环,因为bStop已经读取到了寄存器中,寄存器中bStop的值永远不会变成FALSE,加上volatile,程序在执行时,每次均从内存中读出bStop的值,就不会死循环了。
是否了解volatile的应用场景是区分C/C++程序员和嵌入式开发程序员的有效办法, 搞嵌入式的家伙们经常同硬件、中断、RTOS等等打交道,这些都要求用到volatile变量,不懂得volatile将会带来程序设计的灾难。
3、volatile的注意点
1)volatile指针
和 const 修饰词类似,const 有常量指针和指针常量的说法,volatile 也有相应的概念:
修饰由指针指向的对象、数据是 const 或 volatile 的:
const char* cpch;
volatile char* vpch;
注意:对于 VC,这个特性实现在 VC 8 之后才是安全的。
指针自身的值——一个代表地址的整数变量,是 const 或 volatile 的:
char* const pchc;
char* volatile pchv;
注意:
(1) 可以把一个非volatile int赋给volatile int,但是不能把非volatile对象赋给一个volatile对象。
(2) 除了基本类型外,对用户定义类型也可以用volatile类型进行修饰。
(3) C++中一个有volatile标识符的类只能访问它接口的子集,一个由类的实现者控制的子集。用户只能用const_cast来获得对类型接口的完全访问。此外,volatile向const一样会从类传递到它的成员。
2)一个参数可以既是volatile又是const
为什么?一个例子是只读的状态寄存器。它是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。
3)volatile 关键字是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素(操作系统、硬件、其它线程等)更改。
(没有被 volatile 修饰的变量,可能由于编译器的优化,从 CPU 寄存器中取值)分析一个错误
int square(volatile int *ptr)
{
return *ptr * *ptr;
}
这段代码有点变态,其目的是用来返回指针ptr指向值的平方,但是,由于ptr指向一个volatile型参数,编译器将产生类似下面的代码:
int square(volatile int *ptr)
{
int a,b;
a = *ptr;
b = *ptr;
return a * b;
}
由于*ptr的值可能被意想不到地改变,因此a和b可能是不同的。结果,这段代码可能返回的不是你所期望的平方值!正确的代码如下:
long square(volatile int *ptr)
{
int a=*ptr;
return a * a;
}