CodeForces - 812C (14/600)

On his trip to Luxor and Aswan, Sagheer went to a Nubian market to buy some souvenirs for his friends and relatives. The market has some strange rules. It contains n different items numbered from 1 to n. The i-th item has base cost ai Egyptian pounds. If Sagheer buys k items with indices x1, x2, …, xk, then the cost of item xj is axj + xj·k for 1 ≤ j ≤ k. In other words, the cost of an item is equal to its base cost in addition to its index multiplied by the factor k.

Sagheer wants to buy as many souvenirs as possible without paying more than S Egyptian pounds. Note that he cannot buy a souvenir more than once. If there are many ways to maximize the number of souvenirs, he will choose the way that will minimize the total cost. Can you help him with this task?

Input
The first line contains two integers n and S (1 ≤ n ≤ 105 and 1 ≤ S ≤ 109) — the number of souvenirs in the market and Sagheer’s budget.

The second line contains n space-separated integers a1, a2, …, an (1 ≤ ai ≤ 105) — the base costs of the souvenirs.

Output
On a single line, print two integers k, T — the maximum number of souvenirs Sagheer can buy and the minimum total cost to buy these k souvenirs.

Example
Input
3 11
2 3 5
Output
2 11
Input
4 100
1 2 5 6
Output
4 54
Input
1 7
7
Output
0 0
Note
In the first example, he cannot take the three items because they will cost him [5, 9, 14] with total cost 28. If he decides to take only two items, then the costs will be [4, 7, 11]. So he can afford the first and second items.

In the second example, he can buy all items as they will cost him [5, 10, 17, 22].

In the third example, there is only one souvenir in the market which will cost him 8 pounds, so he cannot buy it.

这个题二分就可以…
每次合理取小的

我也不知道为啥要longlong反正不对就longlong交一发

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define int long long
int tu[100001],ss[100001];
int n, s;
int jiance(int k)
{
    int fs = 0;
    for (int a = 1; a <= n; a++)
    {
        ss[a] = tu[a] + k*a;
    }
    sort(ss + 1, ss + n + 1);
    for (int a = 1; a <= k; a++)
    {
        fs += ss[a];
    }
    if (fs > s)return 0;
    return fs;
}
main()
{
    cin >> n >> s;
    for (int a = 1; a <= n; a++)scanf("%I64d", &tu[a]);
    int z = 1, y = n;
    int daan1 = 0,daan2=0x3f3f3f3f;
    while (z <= y)
    {
        int mid = (z + y) / 2;
        int tt = jiance(mid);
        if (tt)
        {
            if (daan1 == mid)
            {
                daan2 = min(daan2, tt);
            }
            else if (daan1 < mid)
            {
                daan1 = mid;
                daan2 = tt;
            }
            z = mid + 1;
        }
        else y = mid - 1;
    }
    if (daan1 == 0)daan2 = 0;
    cout << daan1 << " " << daan2;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.youkuaiyun.com/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值