lightoj 1033 区间dp

本文介绍了一种算法,用于确定将任意给定字符串转换为回文串所需的最少字符插入数量。通过动态规划方法,文章详细阐述了如何计算每个子区间的最优解,并最终得出整个字符串转换为回文串所需的最小成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

By definition palindrome is a string which is not changed when reversed. “MADAM” is a nice example of palindrome. It is an easy job to test whether a given string is a palindrome or not. But it may not be so easy to generate a palindrome.

Here we will make a palindrome generator which will take an input string and return a palindrome. You can easily verify that for a string of length n, no more than (n - 1) characters are required to make it a palindrome. Consider “abcd” and its palindrome “abcdcba” or “abc” and its palindrome “abcba”. But life is not so easy for programmers!! We always want optimal cost. And you have to find the minimum number of characters required to make a given string to a palindrome if you are only allowed to insert characters at any position of the string.

Input
Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case contains a string of lowercase letters denoting the string for which we want to generate a palindrome. You may safely assume that the length of the string will be positive and no more than 100.

Output
For each case, print the case number and the minimum number of characters required to make string to a palindrome.

Sample Input
Output for Sample Input
6
abcd
aaaa
abc
aab
abababaabababa
pqrsabcdpqrs
Case 1: 3
Case 2: 0
Case 3: 2
Case 4: 1
Case 5: 0
Case 6: 9

这个题就是发现了这么几件事
第一个就是回文串是怎么构成的
一定是两边相等
不相等就要补充
那么从里面开始找
dp记录每一个小区间都补成回文串是最小的补充次数
如果两边不相等那么dp[b][a]=min(dp[c+1][a]+c-b+1,dp[b][a]);
dp[b][a]=min(dp[b][c]+a-c,dp[b][a]);
如果相等那么就是
dp[b][a]=dp[b+1][a-1];
里面的所有区间在后续使用的时候可以全部当成回文串来看
因为本题只需要求个数不需要打印字符串

反正还是区间的老套路…
从前向后,从后向前,中间一滚….

#include<iostream>
#include<string>
#include<algorithm>
#include<memory.h>
#include<cstdio>
using namespace std;
int dp[101][101];
int main()
{
    int T;
    cin>>T;
    int u=0;
    string q;
    while(T--)
    {
        cin>>q;
        int chang=q.size();
        memset(dp,0,sizeof(dp));
        for(int a=0;a<q.size();a++)
        {
            for(int b=a+1;b<q.size();b++)
            {
                dp[a][b]=0x3f3f3f3f;
            }
        }
        for(int a=0;a<chang;a++)
        {
            for(int b=a-1;b>=0;b--)
            {
                if(q[a]==q[b])
                {
                    dp[b][a]=dp[b+1][a-1];
                }
                else
                {
                    for(int c=b;c<a;c++)
                    {
                        dp[b][a]=min(dp[c+1][a]+c-b+1,dp[b][a]);
                        dp[b][a]=min(dp[b][c]+a-c,dp[b][a]);
                    }
                //  cout<<"b    "<<b<<endl<<"a    "<<a<<endl<<dp[b][a]<<endl;
                }
            }
        }
        printf("Case %d: %d\n",++u,dp[0][q.size()-1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值