ABAQUS材料子程序学习(线性各向同性硬化塑性)
前言
记录自己学习abaqus软件umat子程序的t过程,本文主要参考了《非线性本构关系在ABAQUS中的实现》第四章和技术邻的视频课程“非线性各向同性强化弹塑性umat子程序教程”
塑性力学增量形式实现
计算过程中,体应变和体应力是弹性关系 Δ σ v = K ⋅ Δ ε v (1) {Δσ_v}={K}\cdot{Δε_v}\tag{1} Δσv=K⋅Δεv(1)
K K K为体积模量, K = E 3 ( 1 − ν ) K=\cfrac{E}{3(1-ν)} K=3(1−ν)E , Δ ε v = Δ ε 11 + Δ ε 22 + Δ ε 33 Δε_v=Δε_{11}+Δε_{22}+Δε_{33} Δεv=Δε11+Δε22+Δε33
所以在下面的讨论中只考虑偏应力张量和偏应力张量
试应力: σ t r ′ ( t ) = σ ′ ( t ) + C ′ : Δ ε ′ (2) \bm{σ^{tr'}(t)=σ'(t)+\mathbb{C'}:Δε'}\tag{2} σtr′(t)=σ′(t)+C′:Δε′(2)
viogt表记:
{ σ 11 t r ′ σ 22 t r ′ σ 33 t r ′ σ 12 t r ′ σ 23 t r ′ σ 13 t r ′ } = { σ ′ 11 ( t ) σ ′ 22 ( t ) σ ′ 33 ( t ) σ ′ 12 ( t ) σ ′ 23 ( t ) σ ′ 13 ( t ) } + [ 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G ] ⋅ { Δ ε ′ 11 ( t ) Δ ε ′ 22 ( t ) Δ ε ′ 33 ( t ) Δ γ 12 ( t ) Δ γ 23 ( t ) Δ γ 13 ( t ) } \left \{ \begin{matrix} σ_{11}^{tr'}\\ σ_{22}^{tr'}\\ σ_{33}^{tr'}\\ σ_{12}^{tr'}\\ σ_{23}^{tr'}\\ σ_{13}^{tr'}\end{matrix} \right \} =\left \{ \begin{matrix} {σ'}_{11}(t)\\ {σ'}_{22}(t)\\{σ'}_{33}(t)\\{σ'}_{12}(t)\\{σ'}_{23}(t)\\{σ'}_{13}(t)\end{matrix} \right \} +\left [\begin{matrix} 2G&0&0&0&0&0 \\ 0&2G&0&0&0&0 \\ 0&0& 2G&0&0&0 \\ 0&0&0& G&0&0 \\ 0&0&0&0& G&0 \\ 0&0&0&0&0 &G \end{matrix} \right ] \cdot \left \{ \begin{matrix} {Δε'}_{11}(t)\\ {Δε'}_{22}(t)\\{Δε'}_{33}(t)\\{Δγ}_{12}(t)\\{Δγ}_{23}(t)\\{Δγ}_{13}(t)\end{matrix} \right \} ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧σ11tr′σ22tr′σ33tr′σ12tr′σ23tr′σ13tr′⎭⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎫=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧σ′11(t)σ′22(t)σ′33(t)σ′12(t)σ′23(t)σ′13(t)⎭⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎫+⎣⎢⎢⎢⎢⎢⎢⎡2G0000002G0000002G000000G000000G000000G⎦⎥⎥⎥⎥⎥⎥⎤⋅⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧Δε′11(t)Δε′22(t)Δε′33(t)Δγ12(t)Δγ23(t)Δγ13(t)⎭⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎫
静态分析umat用的工程应变: { Δ ε ′ 11 ( t ) Δ ε ′ 22 ( t ) Δ ε ′ 33 ( t ) Δ γ 12 ( t ) Δ γ 23 ( t ) Δ γ 13 ( t ) } = { Δ ε ′ 11 ( t ) Δ ε ′ 22 ( t ) Δ ε ′ 33 ( t ) 2 Δ ε ′ 12 ( t ) 2 Δ ε ′ 23 ( t ) 2 Δ ε ′ 13 ( t ) } \left \{ \begin{matrix} {Δε'}_{11}(t)\\ {Δε'}_{22}(t)\\{Δε'}_{33}(t)\\{Δγ}_{12}(t)\\{Δγ}_{23}(t)\\{Δγ}_{13}(t)\end{matrix} \right \} = \left \{ \begin{matrix} {Δε'}_{11}(t)\\ {Δε'}_{22}(t)\\{Δε'}_{33}(t)\\{2Δε'}_{12}(t)\\{2Δε'}_{23}(t)\\{2Δε'}_{13}(t)\end{matrix} \right \} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧Δε′11(t)Δε′22(t)Δε′33(t)Δγ12(t)Δγ23(t)Δγ13(t)⎭⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎫=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧Δε′11(t)Δε′22(t)Δε′33(t)2Δε′12(t)2Δε′23(t)2Δε′13(t)⎭⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎫
Mises等效应力:
主应力形式:
σ e = { 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 ] } 1 2 {σ_e}=\left \{ \frac{1}{2} \left [ \left (\sigma_1- \sigma_2 \right )^2+ \left (\sigma_2- \sigma_3 \right )^2+\left (\sigma_3- \sigma_1 \right )^2 \right ] \right \}^{\frac{1}{2}} σe={
21[(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2]}21
偏应力形式:
σ e = [ 3 2 ( σ 11 ′ 2 + σ 22 ′ 2 + σ 33 ′ 2 + 2 σ 12 2 + 2 σ 23 2 + 2 σ 13 2 ) ] 1 2 (3) {σ_e}= \left [{\frac{3}{2}} \left ({\sigma'_{11}}^2+ {\sigma'_{22}}^2+{\sigma'_{33}}^2+2{\sigma_{12}}^2+2{\sigma_{23}}^2+2{\sigma_{13}}^2\right )\right ]^{\frac{1}{2}}\tag{3} σe=[23(σ11′2+σ22′2+σ33′2+2σ122+2σ232+2σ132)]21(3)
其中: σ 11 ′ = σ 11 − σ v \sigma'_{11}=\sigma_{11}-\sigma_{v} σ11′=σ11−σv , σ 22 ′ = σ 22 − σ v \sigma'_{22}=\sigma_{22}-\sigma_{v} σ22′=σ22−σv, σ 33 ′ = σ 33 − σ v \sigma'_{33}=\sigma_{33}-\sigma_{v} σ33′=σ33−σv; σ v = 1 3 [ σ 11 + σ 22 + σ 33 ] \sigma_{v}=\frac{1}{3} \left [\sigma_{11}+\sigma_{22}+\sigma_{33} \right] σv=31[σ11+σ22+σ33]
Mises等效塑性应变增量:
Δ ε ˉ p = 2 3 [ ( Δ ε 1 p − Δ ε 2 p ) 2 + ( Δ ε 2 p − Δ ε 3 p ) 2 + ( Δ ε 3 p − Δ ε 1 p ) 2 ] 1 2 Δ\bar{ε}^p=\frac{\sqrt{2}}{3} \left[ \left(Δε_{1}^p-Δε_{2}^p \right)^2 +\left(Δε_{2}^p-Δε_{3}^p \right)^2 +\left(Δε_{3}^p-Δε_{1}^p \right)^2\right]^{\frac{1}{2}} Δεˉp=32[(Δε1p−Δε2p)2+(Δε2p−Δε3p)2+(Δε3p−Δε1p)2]21
线性硬化塑性 σ y = σ y 0 + h ε ˉ p (4) {σ_y}={σ_{y0}}+h\bar{ε}^p\tag{4} σy=σy0+hεˉp(4)
初始屈服加上等效塑性应变乘以硬化系数。
等效塑性变形作为状态变量存在STATEV(NSTATV)中,提取 ε ˉ p \bar{ε}^p εˉp 并计算当前的屈服应力 σ y {σ_y} σy
(2)代入(3),计算试应力的等效Mises应力 σ M i s e s t r {σ}_{Mises}^{tr} σMisestr
判断 σ M i s e s t r {σ}_{Mises}^{tr} σMisestr 与 σ y {σ_y} σy 关系:
若 σ M i s e s t r < σ y {σ}_{Mises}^{tr}<{σ_y} σMisestr<σy : σ ( t + Δ t ) = σ t r ( t ) \bm{σ(t+Δt)}=\bm{σ^{tr}(t)} σ(t+Δt)=σtr(t)
一致切线刚度矩阵,为弹性刚度矩阵
D D S D D E ( i , j ) = [ 2 G + λ λ λ 0 0 0 λ 2 G + λ λ 0 0 0 λ λ 2 G + λ 0 0 0 0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G ] (5) \bm{DDSDDE}(i,j) =\left [\begin{matrix} 2G+λ&λ&λ&0&0&0 \\ λ&2G+λ&λ&0&0&0 \\ λ&λ& 2G+λ&0&0&0 \\ 0&0&0& G&0&0 \\ 0&0&0&0& G&0 \\ 0&0&0&0&0 &G \end{matrix} \right ]\tag{5} DDSD

本文详细介绍了如何在ABAQUS中实现线性各向同性硬化塑性材料模型的umat子程序,涉及增量形式、应力-应变关系、Mises等效应力和塑性应变增量计算,以及屈服条件下的切线刚度矩阵计算。
最低0.47元/天 解锁文章
951





