A. A Twisty Movement
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.
A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, ..., an.
Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, ..., ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.
A non-decreasing subsequence is a sequence of indices p1, p2, ..., pk, such that p1 < p2 < ... < pk and ap1 ≤ ap2 ≤ ... ≤ apk. The length of the subsequence is k.
Input
The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.
The second line contains n space-separated integers, describing the original sequence a1, a2, ..., an (1 ≤ ai ≤ 2, i = 1, 2, ..., n).
Output
Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.
Examples
input
Copy
4 1 2 1 2
output
Copy
4
input
Copy
10 1 1 2 2 2 1 1 2 2 1
output
Copy
9
Note
In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.
In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.
题意:给你一个由1和2组成的数列,你可以旋转一个字串,使得最长不下降子序列最长。
题解:现在题都这么神吗QAQ。这是A题好不好呀QAQ。我真是辣鸡鸭QAQ。
旋转前的序列一定是 11…1 + 22…2 + 11…1 + 22…2 这种形式的。
所以我们找个分割点 i 。1--i求个最长不下降,(i+1)--n求个最长不下降。加起来即可。
#include<bits/stdc++.h>
using namespace std;
int a[2010],f[2010][3],g[2010][3];
int main()
{
int n,i,ans=0;
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
//f[i][j]为前i位(最大值为j)的最长不下降
for(i=1;i<=n;i++)
{
if(a[i]==1)
{
f[i][1]=f[i-1][1]+1;
f[i][2]=f[i-1][2];
}
else
{
f[i][1]=f[i-1][1];
f[i][2]=max(f[i-1][1],f[i-1][2])+1;
}
}
//g[i][j]为后i位(最小值为j)的最长不下降
for(i=n;i>=1;i--)
{
if(a[i]==1)
{
g[i][1]=max(g[i+1][1],g[i+1][2])+1;
g[i][2]=g[i+1][2];
}
else
{
g[i][1]=g[i+1][1];
g[i][2]=g[i+1][2]+1;
}
}
ans=0;
for(i=1;i<=n;i++)
{
ans=max(ans,max(f[i][1],f[i][2])+max(g[i+1][1],g[i+1][2]));
}
printf("%d",ans);
return 0;
}