【cs231n学习笔记(2017)】——— 课程作业assignment1及拓展(KNN)

本文介绍了在cs231n课程中,针对CIFAR-10数据集实现KNN模型的过程。详细讲解了L1和L2模型的构建,包括数据加载、模型训练和预测。通过交叉验证确定L2模型的最佳K值为8,并对比了L1和L2模型的性能。
构建模型
L1模型

代码实现:

import numpy as np


class KNN_L1:
    def __init__(self):
        pass

    def train(self,X, y):
        self.X_train = X
        self.y_train = y

    def predict(self, x):
        num_test = x.shape[0]
        y_pred = np.zeros(num_test, dtype=self.y_train.dtype)
        for i in range(num_test):
            distances = np.sum(np.abs(self.X_train-x[i, :]), axis=1)
            min_index = np.argmin(distances)
            y_pred[i] = self.y_train[min_index]
        return y_pred

将这个模型保存为cs231n_KNN_L1.py文件

L2模型

代码实现:

import numpy as np


class KNN_L2:

    def __init__(self):
        pass

    def train(self,X,y):
        self.X_train = X
        self.y_train = y

    def predict(self,X,k=1,num_loops=0):
        if num_loops==0:
            dists=self.compute_distances_no_loops(X)
        elif num_loops==1:
            dists=self.compute_distances_one_loops(X)
        elif num_loops==2:
            dists=self.compute_distances_one_loops(X)
        return self.predict_labels(dists,k=k)

    #双重循环
    def compute_distances_two_loops(self, X):
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test,num_train))
        for i in range(num_test):
            for j in range(num_train):
                dists[i, j] = np.sqrt(np.sum((X[i, :]-self.X_train[j, :])**2))
        return dists

    # 一层循环
    def compute_distances_one_loop(self, X):
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in range(num_test):
            dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i, :]), axis=1))
        return dists

    #无循环
    def compute_distances_no_loops(self, X):
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        test_sum = np.sum(np.square(X), axis=1)
        train_sum = np.sum(np.square(self.X_train), axis=1)
        inner_product = np.dot(X, self.X_train.T)
        dists = np.sqrt(-2 * inner_product + test_sum.reshape(-1, 1) + train_sum)
        return dists

    def predict_labels(self, dists, k=1):
        num_test = dists.shape[0]
        y_pred = np.zeros(num_test)
        for i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值