1.概述
1.官网下载spark包http://spark.apache.org/downloads.html
2.将spark安装包上传至集群,并解压。以下操作二选一。
3.部署standalone模式的spark集群。
修改conf/slaves文件,添加spark的各个节点ip地址。
4.Spark on yarn模式。
添加环境变量: HADOOP_CONF_DIR=hadoop配置文件所在路径。
2.下载与解压
tar zxvf spark-1.6.1-bin-hadoop2.6.tgz
mv spark-1.6.1-bin-hadoop2.6 spark-1.6.1
3.Local模式
中括号里面是分配的核数
读取文件,这里读取的是本地文件
scala代码如下:
val lines = sc.textFile("/usr/local/data/a.txt")
lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect.foreach(println)
进行wordcount并输出结果
查看spark UI
4.配置集群运行Standalone模式
1.复制slaves.template和spark-env.sh.template文件
cp slaves.template slaves
cp spark-env.sh.template spark-env.sh
2.配置slaves,把loalhost换成集群ip
3.配置spark-env.sh
4.scp 分发到集群
5.sbin目录下启动spark集群,成功后jsp命令可以看到worker进程
6.进入bin目录下运行Standalone模式
运行成功
7.读取文件(本次是从hdfs上读取)
cache()一下
查看读入数据的行数
查看UI,可以看到小绿点
8.进行wordcount操作
查看结果
9查看UI
5.Yarn模式(yarn-client)
yarn-client:driver端跑在client端,可以看到日志与最终统计结果
Spark:Yarn-cluster和Yarn-client区别与联系请看这里https://www.iteblog.com/archives/1223.html
本次实验采用yarn-client
新建maven project
Java代码如下:
package com.neu.spark.sparkTest;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
public class WordCount {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setAppName("wordcount");
//conf.setMaster("local[*]");
SparkContext sc = new SparkContext(conf);
JavaSparkContext jsc = new JavaSparkContext(sc);
JavaRDD<String> data = jsc.textFile("hdfs://172.17.11.172:9000/data/a.txt");
JavaRDD<String> wordRDD =data.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 6449542603028263126L;
public Iterable<String> call(String t) throws Exception {
String[] words = t.split(" ");
List<String> list = new ArrayList<String>();
for (int i = 0; i < words.length; i++) {
list.add(words[i]);
}
return list;
}
});
JavaPairRDD<String, Integer> wordPairRDD= wordRDD.mapToPair(new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 3979244126667010337L;
public Tuple2<String, Integer> call(String t) throws Exception {
// TODO Auto-generated method stub
return new Tuple2<String, Integer>(t,1);
}
});
JavaPairRDD<String, Integer> wordCountRS = wordPairRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer v1, Integer v2) throws Exception {
// TODO Auto-generated method stub
return v1.intValue()+v2.intValue();
}
});
Map<String,Integer> result =wordCountRS.collectAsMap();
System.out.println("The size is "+result.size());
for (Map.Entry<String,Integer> entry:result.entrySet())
System.out.println("Key = "+entry.getKey()+", Value = "+entry.getValue());
}
}
配置文件如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.neu.spark</groupId>
<artifactId>sparkTest</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>sparkTest</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.2.0</version>
</dependency>
<dependency> <!-- Hadoop dependency -->
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0</version>
</dependency>
</dependencies>
</project>
打成jar包,放在集群运行
这里注意参数,一开始报错,后来加上 class– 代码的包名.类名后成功了
读取的hdfs上的文件如下
运行结果如图:
查看8088端口
本次运行并没有设置参数,而是采用默认的,也可以设置参数,也可以集群运行,本地进行debug
/usr/local/tools/spark-1.6.1/bin/spark-submit \
--master yarn-client \
--driver-cores 8 \
--driver-memory 1G \
--num-executors 2 \
--executor-memory 1G \
--executor-cores 4 \
--driver-java-options '-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=9887'
/usr/local/userJars/spark/SparkTest-0.0.1.jar
#--driver-java-options '-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=9887' \
#-JAVA_OPTS = -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=9888 \
6.问题总结
1.Error: No main class set in JAR; please specify one with –class
Run with –help for usage help or –verbose for debug output
加入class参数
2.org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/data/a.txt
首先,查看/usr/local/spark/conf/spark-env.sh中有没有配置HADOOP_CONF_DIR
然后如果从hdfs中上传文件,写成sc.textFile(“hdfs:///data/a.txt”);如果从本地上传文件,写成sc.textFile(“file:///usr/local/data/a.txt”)
如果还是报错,可以试试下面这种写法
sc.textFile("hdfs://172.17.11.172:9000/data/a.txt");
参考网址https://stackoverflow.com/questions/27299923/how-to-load-local-file-in-sc-textfile-instead-of-hdfs